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INTRODUCTION

Fluid fl ow and reactive transport is relevan t to many subsurface applications including CO2 
sequestration, miscible/immiscible displacements in enhanced oil recovery, wellbore acidization, 
pollutant transport, and leakage/remediation of nuclear waste repositories. In all these scenarios, 
one or more fl uid phases fl ow through the complicated geometry of the pore space, while 
advecting one or more chemical species along their fl ow streamlines. Simultaneously, the 
chemical species undergo molecular diffusion, due to their Brownian motion, allowing them 
to randomly jump from one streamline to the next. In the case of fl uid–fl uid or fl uid–mineral 
reactions, chemical species may be transformed, potentially leading to precipitation and/or 
dissolution of solid minerals that alter the geometry/topology of the pore space. This in turn 
affects the velocity fi eld of fl ow, and thus transport via advection/diffusion. Such complicated 
feedback between these pore-scale processes could give rise to “emergent” manifestations at 
larger scales. These manifestations are referred to as “emergent” because they cannot be foreseen 
from the behavior of the individual pore-scale mechanisms involved. In order to make reliable 
predictions of fl ow and transport at any scale of interest, accurate models need to be developed.

Two spatial scales are commonly identifi ed with a porous medium: the “micro/pore scale” 
(1–100 μm) and the “macro/continuum scale” (>1 m). The former is the fundamental scale in 
which physical processes (fl ow, transport, and geochemistry) take place, and the porous medium 
is regarded as discrete in nature (void space vs. grain space). The latter is a more practical scale, 
where we would ultimately like to have a reliable description of fl ow and reactive transport, and 
the porous medium is regarded as a continuum. The macroscopic parameters appearing in the 
description of continuum models, such as permeability or dispersion coeffi cient, are typically 
extracted from experiments or stand-alone pore-scale simulations. While such a “hierarchical” 
upscaling approach is often appropriate, there are many practical problems for which this is 
not the case. In these problems, perturbations of state variables (e.g., concentration) at the pore 
scale are tightly coupled to their averaged quantities at the continuum scale. In other words, 
a clear separation between the temporal scales and/or the spatial scales does not exist. An 
often encountered scenario is solute transport in the presence of strong fl uid–mineral reactions 
(Kechagia et al. 2002; Battiato and Tartakovsky 2011). Any improvement to the continuum 
description of these processes requires a fundamental understanding of the relevant physics at 
the micro scale. In this effort, pore-scale models are an essential asset. 
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This chapter is divided into two parts. In the fi rst, we review various pore-scale modeling 
approaches for simulating fl ow and reactive transport, and discuss their advantages and 
limitations. We focus primarily on single-phase fl ow and transport, and give a brief discussion 
on multiphase fl ow for completeness. Several review articles on the latter are provided as 
reference for the interested reader. Among the various pore-scale models, we place the 
greatest emphasis on pore-network models. Pore-network models are “intermediate-scale”, or 
“mesoscale”, models bridging the gap between the pore scale (1–100 μm) and the core scale 
(10 cm–1 m). This is an important scale because it incorporates several thousand pores, where 
most macroscopic behaviors begin to emerge. Network models are also attractive because of 
their simplicity, which is why they can handle domain sizes much larger than other pore-scale 
models. However, their simplicity can also be the source of inaccuracy and ambiguity.  In 
some cases, one can modify the simplifying assumptions of traditional network models (at 
the expense of increasing their complexity) and substantially increase their accuracy, while 
preserving computational effi ciency. In other cases, such a modifi cation may be inherently 
limited, and a different pore-scale approach has to be sought. We give examples of both 
scenarios in this chapter. In the second part, we turn our attention to the problem of transferring 
information obtained from pore-scale models to larger continuum models. This is an essential 
step, since the latter is the most practical scale of interest to most geochemists, hydrologists, 
and subsurface engineers. This chapter focuses only on a review of modeling strategies that 
are designed for scenarios in which the pore and macro scales are tightly coupled, and are 
not amenable to hierarchical upscaling. Instead these approaches seek to establish a dynamic 
“two-way communication” between the pore and the continuum scales, typically over a 
small region of the porous medium. In doing so, both pore-scale and continuum models are 
used within the same computational domain, which is why they are commonly referred to as 
“hybrid” models. The hope is that the following material familiarizes beginning researchers 
with current advances in pore-scale as well as hybrid modeling, and aids them in adopting and 
improving upon those methods that best fi t their research interests.

PORE-SCALE MODELING

Direct pore-scale modeling 

Over the past few decades modeling fl uid fl ow and solute transport at the pore scale has 
seen the adoption and development of various computational methods. The fi rst and perhaps 
most critical step prior to any modeling effort is the accurate characterization of the pore-space 
geometry/topology. Imaging techniques such as X-ray microtomography (XMT) (Wildenschild 
and Sheppard 2013; Noiriel 2015, this volume) have made it possible to obtain accurate 3-D 
characterizations of the complex pore-space geometry of rock samples. These techniques have 
also been used to visualize and quantify pore structural changes as a result of biofi lm growth 
(e.g., Iltis et al. 2011) and reactive transport (e.g., Noiriel et al. 2005) as shown in Figure 1. For 
granular media, Monte Carlo (Maier et al. 2003), cooperative rearrangement (Thane 2006), 
and sequential sedimentation (Coelho et al. 1997; Øren and Bakke 2002) algorithms are 
commonly used to digitally reconstruct representations of various grain packs, in which 
the pore space geometry is well-defi ned. Such reconstructions, although approximations of 
actual porous media, provide valuable insights into the link between depositional processes 
(e.g., cementation and compaction) and hydraulic/transport properties (e.g., permeability) of 
granular media (Bryant et al. 1993a,b; Bakke and Øren 1997). 

Modeling can then proceed either by simulating directly on the complex void geometry, 
or on a simplifi cation thereof. The former approach is typically referred to as direct modeling, 
while the latter is closely associated with pore-network modeling (see the Pore-network models 
section). In this section, we review a handful of direct modeling approaches recently used at 
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the pore scale. These include computational fl uid dynamics (CFD) (Wendt 2009; Molins et al. 
2014; Trebotich et al. 2014; Molins 2015, this volume), Lattice-Boltzmann (LB) (Chen and 
Doolen 1998; Yoon et al. 2015, this volume), and smoothed particle hydrodynamics (SPH) 
(Monaghan 1992; Tartakovsky et al. 2008b). These methods can be used to solve the governing 
Equations (1–2) for single-phase, incompressible, Newtonian fl ow on the pore space.
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Equations (1a) and (1b) represent the Navier–Stokes and continuity equations, respectively. 
v, p, , μ, c denote fl uid velocity, pressure, density, viscosity, and solute concentration. 
fb denotes body forces exerted on the fl uid. Equation (1c) is the no-slip boundary condition at 
the rock–fl uid interface, fs. Since typical Reynolds numbers (Re = d/μ; d is a characteristic 
length of the medium typically the grain size) in the subsurface are low (<1), the inertial 
term (i.e., v·v) is commonly ignored. Equation (2a) represents the species-balance equation 
with a homogeneous reaction rate of rhm (Dm is the molecular diffusion coeffi cient), and 
Equation (2b) represents the heterogeneous reactive boundary condition (of rate rht) at the 
rock–fl uid interface. While both fl uid fl ow (i.e., Eqn. 1) and solute transport (i.e., Eqn. 2) can 
be solved via either of the foregoing direct modeling approaches, Eulerian (or mesh-based) 
methods (e.g., CFD) are typically preferred for computing fl ow and Lagrangian (or particle-
based) methods (e.g., SPH) for transport, since they are devoid of numerical dispersion. 

Figure 1. (i) 3-D XMT image of biofi lm growth on glass beads [Used by permission of John Wiley & 
Sons, Inc., from Iltis GC, Armstrong RT, Jansik DP, Wood BD, Wildenschild D (2011) Imaging biofi lm 
architecture within porous media using synchrotron-based X-ray computed microtomography. Water Re-
sources Research, Vol. 47, no. 2, doi: 10.1029/2010WR009410, Fig. 1. Copyright © 2011 by the American 
Geophysical Union]. Cross-sectional XMT image of a limestone core sample at (iia) initial state and (iib) 
difference between initial and fi nal states of a reactive transport  experiment (i.e., dissolution by acidic 
carbon-dioxide-saturated water); (dark) porosity, (high grey level) matrix, (low grey level) dissolved ma-
trix (i.e., increased porosity) [Used by permission of Oil and Gas Science Technology, from Noiriel C, 
Bernard D, Gouze P, Thibault X (2005) Hydraulic properties and microgeometry evolution accompanying 
limestone dissolution by acidic water, Oil & Gas Science and Technology, Vol. 60, p. 177–192, Fig. 4].
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Another popular Lagrangian method used for simulating transport at the pore scale is particle 
tracking (PT). In this method, particles (or random walkers) are propagated through the void 
space via a deterministic advection step that follows the streamlines, followed by a stochastic 
diffusion step that obeys Einstein’s equation; i.e., 2

m  2 ,r dD t    where d is the dimensionality 
of the problem, and r and t are the stochastic spatial and temporal step sizes, respectively. 

Maier et al. (2000, 2003) studied dispersion on digitally generated sphere packs using LB 
and PT to solve fl ow and transport, respectively, and reported good agreement with measurements 
from nuclear magnetic resonance (NMR) spectroscopy experiments. Molins et al. (2012) used 
an adaptive meshing CFD method to study the “lab-fi eld discrepancy” of geochemical reaction 
rates (Fig. 2i). Their study provides valuable insight into the vital role of pore-scale modeling as 
a crucial guide towards predictive macro-scale modeling. Yang et al. (2013) used CFD to solve 
the Navier–Stokes fl ow equations on a bead pack and successfully compared the velocity fi eld to 
that obtained from magnetic resonance velocimetry measurements. Zaretskiy et al. (2010) used 
a fi nite-element–fi nite-volume method to study longitudinal dispersion on a digitized sample 
of Fontainebleau sandstone. They highlighted the sensitivity of the pore-scale modeling results 
to the computational mesh employed. Mostaghimi et al. (2012) used a combination of fi nite 
difference and PT for fl ow and transport, respectively, on micro-CT images of Berea sandstone, 
and produced longitudinal dispersion coeffi cients in quantitative agreement with experimental 
data. Ovaysi and Piri (2011) used a Lagrangian approach referred to as the modifi ed moving 

Figure 2. (ia) Absolute velocity magnitude, and (ib) total calcium concentration for a two-zone domain of 
heterogeneously packed calcite grains computed via an adaptive meshing CFD method [Used by permis-
sion of John Wiley & Sons, Inc., from Molins S, Trebotich D, Steefel CI, Shen C (2012), An investigation 
of the effect of pore scale fl ow on average geochemical reaction rates using direct numerical simulation, 
Water Resources Research, Vol. 48, Issue 3, doi: 10.1029/2011WR011404, Fig. 5]. (iia)-(iic) Distribution 
of the non-wetting phase in drainage accompanied by thermally-induced melting of the solid phase, for 
different melting effi ciencies described by the Stefan (St) number. LB was used in performing these simula-
tions [Used by permission of Cambridge University Press, from Parmigiani A, Huber C, and Bachmann O, 
and Chopard B (2011), Pore-scale mass and reactant transport in multiphase porous media fl ows, Journal 
of Fluid Mechanics, Vol. 686, p. 40-76, Fig. 8]. (iii) Comparison of predicted longitudinal dispersion coef-
fi cients (black dots), using the MMPS method, and experiments (red dots) for various Péclet numbers (=ad-
vection/diffusion) [Used by permission of Elsevier Ltd., from Ovaysi S, Piri M (2011), Pore-scale modeling 
of dispersion in disordered porous media, Journal of Contaminant Hydrology, Vol. 124, p. 68–81, Fig. 7]



Mesoscale and Hybrid Models of Fluid Flow and Solute Transport 437

particle semi-implicit (MMPS) method to solve fl ow and transport on sandstone samples. They 
obtained longitudinal dispersion coeffi cients in favorable agreement with experimental data (Fig. 
2iii), and included non-inertial effects in their simulations.

Kang et al. (2010) and Yoon et al. (2012) used LB to perform single-phase multi-component 
reactive transport simulations involving calcite precipitation and dissolution. Kang et al. (2010) 
additionally pointed out discrepancies between continuum and pore-scale predictions of the 
reactive front velocity. Multiphase fl ow and multicomponent reactive transport simulations 
using direct modeling approaches have also been performed in the literature (Parmigiani et 
al. 2011; Chen et al. 2013, 2014). For example, Parmigiani et al. (2011) used LB to simulate 
drainage accompanied by thermally induced melting of the solid phase (Fig. 2ii). Since the 
focus of this paper is primarily on single-phase transport phenomena, the reader is referred to 
Meakin and Tartakovsky (2009) for a complete formulation of the governing equations as well 
as modeling methods for multiphase fl ow and reactive transport at the pore scale. 

Despite the high fi delity of direct modeling predictions and the fundamental insights they 
provide about the underlying physical mechanisms of a given phenomenon, they often demand 
high performance computational resources and massive parallelism (Oostrom et al. 2014). 
This poses a limit on the size and scale of the problems to which they can be applied. Such 
limitations have made pore-network modeling very popular over the past few decades, which 
overcome this limitation by simplifying the complex void space geometry while preserving 
essential features thereof. In the following section, we discuss pore-network models and 
provide examples of what we mean by “essential features”.

Pore-network models

The popularity of pore-network models arose out of the pioneering works of Fatt 
(1956a,b,c), who studied two-phase drainage on a 2-D lattice network of randomly assigned 
throat radii. This was a radical shift from the hitherto bundle-of-tubes representation of porous 
media for computation of various macroscopic properties. Pore networks are simplifi ed 
representations of the complex pore-space geometry and consist of an interconnected network 
of pores (or nodes) and throats (or bonds) (Fig. 3i). This geometric simplifi cation is the reason 
why network models are more computationally effi cient than direct pore-scale models, and 
applicable to much larger domain sizes. The elements of a pore network are typically assigned 
relatively simple shapes amenable to analytical treatment, e.g., spheres for pores and cylinders 
for throats. Scenarios in which either pores or throats are assigned zero volumes have also 
been considered. A summary of various pore/throat shapes used in the literature can be found 
in Joekar-Niasar (2010). The manner in which pores are connected to their nearest neighbors 
constitutes the network topology (coordination number is a parameter closely related to the 
network topology and is defi ned as the number of connected neighbors to a given pore) while 
the specifi c geometric idealizations used to represent pores/throats comprise the network 
geometry. Proper characterization of both the topological and geometric aspects of porous 
samples is the fi rst necessary step, if pore-network models are to be predictive. 

Early works on pore-network characterization typically involved statistical mappings of 
pore/throat properties (e.g., radii, coordination number) onto a lattice structure (Payatakes et al. 
1980; Mohanty et al. 1987), or adjusting pore/throat properties to match one set of measurements 
(e.g., capillary pressure) followed by predictions of more diffi cult-to-measure properties (e.g., 
relative permeability) (Fischer and Celia 1999; Vogel 2000). However, statistically mapped 
networks often ignore spatial correlations present in real rocks due to the random assignment 
of pore/throat properties, and adjusted networks (to match one set of measurements) suffer 
from non-uniqueness in their representation. For these reasons, statistically generated networks 
are typically not considered to be predictive. Bryant and coworkers (Bryant and Blunt 1992; 
Bryant et al. 1993a,b) introduced the concept of physically representative networks, which 
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marked the beginning of truly predictive network modeling. In their work, permeability, relative 
permeability, capillary pressure, and permeability–porosity relationships, were all accurately 
and directly predicted without adjustable parameters using only grain positions in a disordered 
sphere pack (measured by Finney 1968). The network was extracted via Delaunay Tessellation 
of the sphere centers (Fig. 3i), and its main attraction was that spatial correlations of the pore 
space were naturally imbedded into the extracted network. Recent advances in computer and 
imaging facilities has given rise to various image analysis techniques whereby physically 
representative networks can be obtained from digitized images of real samples. These include 
medial-axis (Thovert et al. 1993; Lindquist et al. 1996; Lindquist and Venkatarangan 1999; 
Prodanovič et al. 2006), watershed (Sheppard et al. 2006; Thompson et al. 2008), and maximal-
ball (Silin and Patzek 2006; Dong and Blunt 2009) algorithms. These techniques have resulted 
in further quantitative predictions of single-phase and multi-phase fl ow properties in water-wet 
and mixed-wet media (e.g., Bakke and Øren 1997; Øren et al. 1998; Patzek 2001).

Since Fatt’s (1950a,b,c) works, pore-network models have been used in many other 
applications including: non-Newtonian fl ow (Lopez et al. 2003; Balhoff 2005), non-Darcy fl ow 
(Thauvin and Mohanty 1998; Balhoff and Wheeler 2009), solute dispersion (Sahimi 1986; 
Sorbie and Clifford 1991; Bijeljic et al. 2004, Bijeljic and Blunt 2007; Acharya et al. 2007b), 
reactive transport (Hoefner and Fogler 1988; Li et al. 2006; Algive et al. 2010; Kim et al. 2011) 

Figure 3. (ia)-(ic) Schematic of network extraction from a granular medium via Delaunay tessellation. The 
resultant network is essentially a ball-and-stick model, in which the pores and throats are represented here 
as spheres and cylinders, respectively (ii) Schematic of a two-scale network with half the grains replaced 
by grain-fi lling microporosity (due to partial dissolution as is typical in tight gas sandstones) [Figs. 3i and 
3ii used by permission of Elsevier Ltd., from Mehmani A, Prodanovič M (2014) The effect of microporos-
ity on transport properties in porous media. Advances in Water Resources, Vol. 63, p. 104–119, Figs. 1 and 
3]. (iii) Wormhole formation due to transport-limited matrix dissolution (here a decrease in Damköhler 
number corresponds to an increase in injection rate) [Used by permission of John Wiley & Sons, Inc., 
from Hoefner ML, Fogler HS (1988), Pore evolution and channel formation during fl ow and reaction in 
porous media, AIChE J, ASME 2011 5th International Conference on Energy Sustainability, Vol. 34, Issue 
1, p. 45–54, Fig 12. Copyright © 1988 American Institute of Chemical Engineers]. Simulated supercriti-
cal CO2 saturation distributions for a 50 × 50 pore-network model of (iva) sandstone and (ivb) shale at 
Ca = 10-4 (i.e., capillary number = viscous forces/capillary forces) [Used by permission of the American 
Society of Mechanical Engineers, from Ellis JS, Ebrahimi A, Bazylak A (2011), Characterization of a Two-
Phase Pore-Scale Network Model of Supercritical Carbon Dioxide Transport Within Brine-Filled Porous 
Media. In: ASME 2011 5th International Conference on Energy Sustainability, p. 1307–1314, Fig. 7].
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(Fig. 3iii), multi-phase fl ow (Koplik and Lasseter 1985; Al-Gharbi and Blunt 2005; Piri and 
Blunt 2005; Joekar-Niasar et al. 2010; Ellis et al. 2011) (Fig. 3iv), biofi lm growth (Suchomel et 
al. 1998a,b), and modeling dual-scale media containing micron- and submicron-scale porosity 
(Mehmani et al. 2013; Mehmani and Prodanovič 2014a,b; Prodanovič et al. 2014) (Fig. 3ii). A 
larger portion of this literature is devoted to two-phase fl ow (drainage and imbibition), due to 
its signifi cance in petroleum engineering (oil recovery) and soil sciences. The reader is referred 
to comprehensive reviews of pore-scale modeling of multiphase fl ow by Celia et al. (1995) and 
Blunt (2001) for more information. An excellent review by Berkowitz and Ewing (1998) further 
provides insights into the close connection between (quasi-static) two-phase fl ow and (invasion) 
percolation theory.  It is noteworthy, that while the development of multiphase fl ow network 
models as well as single-phase reactive/passive transport network models have separately seen 
considerable progress over the past few decades, a merger between the two is rarely observed in 
the literature. Since the geologic storage of CO2, for example, involves the fl ow of supercritical 
CO2 and brine in the presence of multicomponent geochemical reactions with the potential for 
mineral precipitation/dissolution, such a merger is very much needed.

Pore-network models are often regarded as “mesoscale” models acting as a critical 
bridge between our fundamental understanding of fl uid fl ow/transport physics at the pore 
scale (1–100  μm) and our practical desire for modeling at the continuum scale (>1 m). 
The reliability of such intermediate-scale models, however, hinges upon their underlying 
simplifying assumptions. There are two levels of approximations made in every pore-network 
model. The fi rst is geometric, and occurs in replacing the complex void space geometry with 
an “equivalent” pore network. The other is physical, and occurs when we make simplifying 
assumptions to describe the pore-scale physics on this idealized geometry. The key to 
constructing predictive network models is to identify and capture the most essential geometric 
and physical features associated with a given phenomenon (as alluded to in Direct pore-scale 
modeling). These essential features are not invariant from one problem to the next. In multi-
phase fl ow, for example, it is very important to include angular geometries in the description 
of the pore network. Excluding this feature ignores the possibility of corner fl ow of the wetting 
phase, and snap-off of the non-wetting phase because of it. On the other hand, including inertial 
effects in the description of two-phase fl ow in a pore-network model seems to be of little 
importance if residual saturation trapped behind an advancing drainage front is to be predicted 
(Moebius and Or 2014). In single-phase fl ow, angularities are unimportant and only accurate 
values for hydraulic conductivities of the network elements are required. When geochemical 
reactions are present, neglecting to accurately quantify fl uid–mineral interfacial areas will lead 
to large errors in macroscopic predictions. In passive solute transport, while assuming perfect 
mixing conditions within individual pores is inappropriate for ordered media, it appears to be 
a good assumption for disordered media (see Network modeling of solute transport). 

In identifying these essential geometric and physical features, direct pore-scale modeling 
as well as controlled (e.g., micromodel) experiments play an indispensable role. Once an 
essential feature is identifi ed, traditional network models may be modifi ed to attain improved 
predictive accuracy. Although such a modifi cation may not always be possible, in which case 
a different mesoscale modeling strategy has to be sought. In the following section, we review 
network modeling of single-phase solute transport and provide two examples where direct pore-
scale modeling was used to establish the need for modifying traditional mesoscale assumptions. 
In the fi rst, modifi cations lead to substantial improvements in the predictive capacity of the 
traditional network model, while in the second improvements appear to be inherently limited.

Network modeling of solute transport

Pore-network modeling of solute transport has received special interest from many 
authors in the past few decades and several methodologies have been proposed. A prerequisite 
to simulating transport is the computation of the velocity fi eld within throats. The procedure 
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is quite standard and involves: a) imposing pressure boundary conditions on the pore network, 
b) describing fl ow rates within throats via a constitutive equation e.g., Hagen–Poiseuille 
for Newtonian fl uid in a cylindrical throat, c) enforcing mass balance at each pore e.g., 
Equation (3), where gij is the throat hydraulic conductivity, pij 

the pressure drop across the 
throat, and th

iN  the number of throats connected to pore i, d) solving the resultant system 
of (linear or nonlinear, depending on fl uid rheology and/or fl ow regime) equations for pore 
pressures, and e) computing throat fl ow rates/velocities from the aforementioned constitutive 
throat equation.
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The simulation of transport then resumes using computed throat fl ow rates/velocities. 
Below in this section, we review several Eulerian and Lagrangian approaches developed in 
the literature for modeling transport on pore networks. Advantages and limitations of each 
method are outlined and discussed. We then focus on the main sources of error and diffi culty 
within each modeling class, and the possibility of minimizing them. Finally, we provide a brief 
review of modeling homogeneous/heterogeneous reactions on pore networks.

Eulerian network models. Bryntesson (2002), Acharya et al. (2005, 2007b), Li et al. 
(2006), Kim et al. (2011), Mehmani et al. (2012), and Nogues et al. (2013) are among those 
who have adopted the popular mixed-cell method (MCM), in which solute-balance equations 
are written for each pore, i.e., Equation (4).
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In Equation (4), ci and pi
V

 
are the concentration and volume of pore i; qij, aij, and lij are the 

throat fl ow rate, cross-sectional area, and length, respectively; R(ci) is the reaction term. In this 
method, throats are assumed to be volumeless and the solute within the pores perfectly mixed 
(i.e., single concentration value assigned to each pore). Solute fl ow rates within throats are 
formulated as the algebraic sum of an upwinded advection term (fi rst two terms on the RHS 
of Eqn. 4) and a linearly varying diffusion term (third term on the RHS of Eqn. 4). Essentially, 
MCM can be regarded as a low-order, fi nite-volume method on an unstructured grid, i.e., the 
pore network. The advantage of MCM is that it is very computationally effi cient and highly 
adaptable to various transport scenarios. For example, Acharya et al. (2005) used MCM to 
study non-linearly adsorbing solute transport, and determined that more than a million pores 
were required for their results to be statistically representative. Li et al. (2006) and Kim et al. 
(2011) studied complex geochemical reaction kinetics of anorthite and kaolinite precipitation/
dissolution relevant to CO2 sequestration. Nogues et al. (2013) studied porosity/permeability 
evolutions in carbonates due to carbonic-acid-driven precipitation/dissolution reactions. They 
considered 18 aqueous species and 5 mineral species undergoing 14 independent reactions. 
The fl exibility and computational effi ciency of MCM is why such complex systems acting on 
suffi ciently large pore-scale domains can even be considered.

A number of variants and/or modifi cations of MCM have also been developed in the 
literature. For example, Raoof et al. (2013) assign volume to both pores and throats (solute 
still perfectly mixed in both) and sub-discretize the wetting fi laments in the corners of partially 
drained pores to account for the partial mixing of solute within them (Fig. 4iv). Van Milligen 
and Bons (2014) proposed a modifi cation to the throat rate expressions used in MCM (i.e., 
fi rst three terms on the RHS of Eqn. 4) by deriving analytical expressions based on a steady-
state plug-fl ow assumption within throats. They occasionally further sub-discretized throats 
into smaller “pores” for increased modeling resolution. A generalization of this method 
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for non-uniform velocity profi les was given by Mehmani (2014) (referred to as the rate-
modifi ed MCM), but it was shown that these modifi cations offered little improvement in 
model predictions compared to MCM. Algive et al. (2010, 2012) and Varloteaux et al. (2013) 
similarly modifi ed throat solute rate expressions in the context of reactive transport. These 
works employed moment theory to derive corrected macroscopic parameters (i.e., solute 
mean velocity, dispersion coeffi cient, reaction source term) for each pore/throat element in 
the long-time asymptotic regime. The model was used to study the effects of dissolution/
precipitation reactions on macroscopic single- and two-phase fl ow properties in the contexts 
of CO2 sequestration and diagenetic alterations in carbonate rocks. Suchomel et al. (1998b) 
developed a model in which pores were assumed volumeless and throats were sub-discretized 
into fi nite-difference grids. Interpore diffusion (equivalent of the third term in the RHS of 

Figure 4. (i) Evolution of a solute plume (three snapshots per case) through a 2-D domain for different 
Péclet numbers and degrees of heterogeneity simulated using DPT.  Fluid injection is from a small region 
to the left side of the domain marked by a thick segment [Used by permission of John Wiley & Sons, Inc., 
from Bruderer C, Bernabé Y (2001), Network modeling of dispersion: Transition from Taylor dispersion 
in homogeneous networks to mechanical dispersion in very heterogeneous ones, Water Resources Re-
search, Vol. 37, p. 897–908, Fig. 6. Copyright © by the American Geophysical Union]. (ii) Comparison 
of predicted longitudinal (upper curve) and transverse (lower curve) dispersion coeffi cients using DPT 
with experiments for unconsolidated granular media, for various Péclet numbers [Used by permission of 
the Society of Petroleum Engineers, from Bijeljic and Blunt (2006), A Physically-Based Description of 
Dispersion in Porous Media, In: SPE Annual Tech. Conf. and Exhibition, Society of Petroleum Engineers, 
SPE-102869-MS, Fig. 3. Copyright 2013, Society of Petroleum Engineers. Further reproduction prohibited 
without permission]. (iiia) Schematic of partial mixing at the 2-D intersection of two fractures, and (iiib) 
its conceptualization by a unidirectional fl ow/transport geometry amenable to analytical treatment [Used 
by permission of John Wiley & Sons, Inc., modifi ed after Park YJ, Lee KK (1999), Analytical solutions for 
solute transfer characteristics at continuous fracture junctions, Water Resources Research, Vol. 35, Issue 5, 
p. 1531–1537, Figs. 1, 2, and 3. Copyright 1999 by the American Geophysical Union]. (iva) Schematic of a 
drained cubic pore by a non-wetting phase. (ivb) The wetting fi laments in the crevices of the pore are sub-
discretized into 8 pores (corresponding to the corners) and 12 throats (corresponding to the edges) [Used 
by permission of Elsevier, Ltd., modifi ed after Raoof A, Nick HM, Hassanizadeh SM, Spiers CJ (2013), 
PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous 
media, Computers & Geosciences, Vol. 61, p. 160–174, Fig. 4].
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Eqn. 4) was implicitly incorporated by adjusting numerical diffusion via grid and time-step 
sizes (although this does not account for diffusion countercurrent to the fl ow direction), and 
perfect mixing was assumed within pores. The model was used to study permeability/porosity 
alterations during bacterial biofi lm growth in porous media. A simple but interesting model 
was developed by Martins et al. (2009), in which the solute balance equations at the pores were 
formulated as a system of delay-differential equations, i.e., Equation (5).
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In Equation (5), ij is the throat residence time, which accounts for the delay in transport 
from one pore to the next. In essence, the model uses upstream concentrations from earlier 
time steps to compute solute fl ow rates fl owing into pores at later times. This is implemented 
by sub-discretizing the throats and marching pore concentrations forward within the sub-
discretized segments (akin to a traveling wave). However, several limiting assumptions were 
made including the neglect of diffusion, plug-fl ow within throats, and perfect mixing within 
pores. 

A different set of models formulate transport equations in the Laplace transform domain 
with respect to the time variable. There is a certain extent of elegance and convenience 
associated with working in the Laplace domain, mainly due to the fact that convolutions of 
transit-time probabilities are converted to simple algebraic multiplications. Another advantage 
is that computation of temporal moments becomes rather straightforward (the Laplace 
transform of transit-time distributions act as moment generating functions). De Arcangelis 
et al. (1986) developed fi rst-passage-time probabilities for tracer particles that move through 
throats connecting two neighboring pores. They assumed perfect mixing at the (volumeless) 
pores and plug fl ow with molecular diffusion at the throats. Under these conditions, they 
derived exact transit probabilities in the Laplace domain for particle motions in a network. 
They then used a “probability propagation” algorithm to determine the fi rst-passage-time 
distribution of a 10 × 10 diamond lattice network and computed longitudinal dispersion 
coeffi cients for various Péclet numbers (= advection/diffusion). At no point was the time-
domain concentration fi eld computed. Koplik et al. (1988) used the same set of equations as 
de Arcangelis et al. (1986) but diverged in their analysis by writing species balance equations 
for each pore in the Laplace domain. The resulting linear system of equations was then solved 
and numerically inverted into the time domain using the Stehfest (1970) algorithm. A strategy 
for computing higher-order moments of fi rst-passage-time distributions of the network was 
further outlined. This method was later extended by Alvarado et al. (1997) to reversible 
adsorption/reaction scenarios, where they arrived at the interesting conclusion that dispersion 
coeffi cients depend on the degree of spatial heterogeneity of reactive sites in a porous sample 
and scale non-linearly with Péclet number. However, they noted that the numerical Laplace 
inversion step was prohibitive for networks larger than 20 × 20 pores and inaccurate for large 
Péclet numbers (>10). Indeed numerical inversion of the Laplace transform is known to be 
notoriously diffi cult (often unstable) and ill-posed in computational and applied mathematics. 
For this reason, although valuable for performing moment analyses, time-domain predictions 
via these methods on representative sample sizes seem impractical and unlikely.

Lagrangian network models. A more natural description of transport is provided by 
Lagrangian models, among which particle tracking (PT) is almost exclusively employed. In 
this method the steady-state fl ow equation is fi rst solved on the network, as described in the 
beginning of this section, to obtain mean fl uid velocities within each throat. Then, depending 
on the specifi c throat geometry, a (rectilinear) velocity profi le is assumed and used to track 
particles from pore to pore, subject to simultaneous convection and molecular diffusion 
(Fig. 4i). Lagrangian network models are generally more computationally expensive than 
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Eulerian network models, although more accurate. The limiting factor is the large number of 
solute particles often required in Lagrangian network models to obtain statistically converged 
results. PT methods on pore networks can be divided into two categories: a) those that trace 
particle motions in detail within throats following a discrete-time random walk process 
(Bruderer and Bernabé 2001; Bijeljic et al. 2004; Acharya et al. 2007a; Jha et al. 2011), and b) 
those that perform continuous-time random hops from one pore to the next (without explicit 
throat-level simulations) using throat transit-time distributions (Sahimi et al. 1986; Sorbie 
and Clifford 1991; Rhodes and Blunt 2006; Bijeljic and Blunt 2006; Picard and Frey 2007). 
We refer to the fi rst class as DPT (discrete-time particle tracking) and to the second as CPT 
(continuous-time particle tracking). 

Compared to CPT, DPT simulations are more time consuming since computational 
performance is limited by the time step size (controlled by the minimum throat residence 
time throughout the network). However, DPT can be quite accurate and has been used to 
successfully predict dispersion coeffi cients in unconsolidated granular media (e.g., Bijeljic 
et al. 2004; Jha et al. 2011) (Fig. 4ii). It is also very fl exible in the sense that various velocity 
profi les (e.g., parabolic or plug-fl ow) within the throats can be considered, and one has 
substantial control on how to reassign particles to new outlet throats upon their arrival at the 
pores. Specifi cally, particles can be reassigned to any desired throat connected to the arrival 
pore, and even any desired location on the cross-section of that throat. In contrast, CPT is 
computationally more effi cient but comparatively less fl exible and less accurate especially 
in ordered media, as discussed in Diffi culties and Sources of Error. The effi ciency is due 
to the fact that particle motions within throats are not explicitly simulated, but are instead 
imbedded in the throat transit-time distributions. The reduced fl exibility and accuracy are due 
to the loss of control in reassigning incoming particles to accurate cross-sectional locations 
of the outlet throats of a pore. This means that once an outlet throat is chosen (based on some 
probability), a transit-time distribution is used to determine the time the particle requires to 
exit the throat. But the transit-time distribution is typically stationary in time and is derived 
with uniform inlet conditions for concentration. Therefore, there is no way to specify the 
cross-sectional location an incoming particle should be assigned to in an outlet throat of a 
pore. This is particularly important in simulating dispersion in ordered media, for which 
CPT will not yield the expected (e.g., Edwards et al. 1991) 2

L ~ PedD  scaling, where DL is 
the longitudinal dispersion coeffi cient, and Ped is the Péclet number defi ned as the ratio of 
advection to diffusion (Mehmani 2014). 

CPT methods can be further subdivided into those that use deterministic transit-time 
distributions (e.g., Sorbie and Clifford 1991; Picard and Frey 2007), and those that use 
ensemble-averaged transit-time distributions (e.g., Bijeljic and Blunt 2006; Rhodes et al. 
2009). Bijeljic and Blunt (2006) derived an ensemble-averaged transit-time distribution for 
Berea sandstone by fi tting a truncated power-law distribution to their simulation results. They 
provided physically meaningful interpretation of the distribution variables and fi tted their 
simulated data with a single adjustable parameter. On the other hand, deterministic transit-
time distributions are often derived based on similar mathematics and assumptions as those 
already discussed in the context of Laplace-domain Eulerian network models (e.g., Rhodes 
and Blunt 2006; Picard and Frey 2007). These assumptions include perfect mixing within 
volumeless pores and plug fl ow within throats. Deterministic transit-time distributions are 
often numerically inverted from the Laplace domain to the time domain in order to draw 
particle transit times within the throats. An exception to this is Sorbie and Clifford (1991) who 
derived deterministic transit-time distributions based on rigorous single throat simulations 
assuming non-uniform velocity profi les.

Diffi culties and sources of error. The most common sources of ambiguity and error 
in both Eulerian and Lagrangian network models of single-phase solute transport are in the 
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descriptions of partial mixing conditions within pores (Fig. 5a), and shear dispersion (i.e., 
spreading of the solute due to non-uniform velocity profi les) within throats (Fig. 5b). Accurate 
modeling of these fundamental transport physics could have a signifi cant impact on quantitative 
macroscopic predictions of solute dispersion and effective reaction rates. Almost all Eulerian 
network models developed in the literature seem to assume perfect mixing within pores 
and neglect shear dispersion within throats. Models assuming Taylor–Aris shear dispersion 
coeffi cients within throats are unrealistic because throat lengths are typically not long enough 
for an asymptotic regime to be reached (Mehmani 2014). On the other hand, the incorporation 
of shear dispersion into Lagrangian network models (e.g., PT) is quite straightforward (see the 
discussion of these models above), but accurate description of pore-level partial mixing is still 
a source of ambiguity in these models. 

In reality, perfect mixing occurs when diffusive forces are much more dominant than 
either advective or reactive forces. In the absence of reactions, increasing the Péclet number 
changes pore-level mixing conditions from perfect mixing to partial mixing. Figure 5a shows 
direct numerical simulations of this scenario in a 2-D pore (Mehmani et al. 2014). When 
reactions are present, increasing the Damköhler number (= reaction/diffusion), while keeping 
the Péclet number constant, causes a high-concentration-gradient boundary layer to develop 
near the fl uid–solid interface. In pore-network models, the effect of reaction-induced boundary 
layers may be implicitly taken into account in the calculation of pore concentrations, although 
this scenario unfortunately has not been explored enough in the literature. In the following, we 
shall focus on shear dispersion and partial mixing in the absence of chemical reactions, and 
defer further discussion on the effects and modeling approaches of reactions until the very end 
of this section.

The ambiguity in accurately describing partial mixing within pores stems from the 
diffi culty in approximating fl ow streamlines within pores and the extent of diffusive mixing 
occurring therein (Fig. 5a). Sahimi et al. (1986) and Bruderer and Bernabé (2001) developed 
simple intuitive rules for the redistribution of solute particles from the inlet to the outlet throats 
of a 2-D cross-shaped volumeless pore. Both ignored diffusive mixing within pores, in the sense 
that the particles could not randomly “hop” between outlet throats. Sorbie and Clifford (1991) 
introduced general heuristic, and admittedly approximate, rules for redistributing particles 
arriving at a pore among its outlet throats. These rules, and variants thereof, were subsequently 

Figure 5. (a) Schematic of partial mixing within a sample pore and its dependence on local Péclet num-
ber (underlying streamlines also shown) [Used by permission of John Wiley & Sons, Inc., modifi ed after 
Mehmani Y, Oostrom M, Balhoff MT (2014), A streamline splitting pore-network approach for compu-
tationally inexpensive and accurate simulation of transport in porous media, Water Resources Research, 
Vol. 50, Issue 3, pp. 2488–2517, Fig. 1. ©2014. American Geophysical Union. All Rights Reserved]. (b) 
Schematic of shear dispersion of solute within the throats of a 1D pore-network, due to the non-uniform 
velocity profi le (shown by curved solid line). Figures obtained through CFD simulations on respective 
pore-space geometries using COMSOL© [Used by permission of author, modifi ed after Mehmani (2014), 
Modeling of single-phase fl ow and solute transport across scales, PhD dissertation, University of Texas at 
Austin, Fig. 4.5].
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applied and analyzed in later publications (e.g., Acharya et al. 2004, 2007a,b; Bijeljic et al. 
2004; Bijeljic and Blunt 2007). At high Péclet numbers, these rules reduce to redistribution of 
solute particles based on fl ow-rate-averaged probabilities; at low Péclet numbers, they reduce 
to redistribution based on throat cross-sectional-area-averaged (multiplied by other corrective 
parameters) probabilities. These rules, however, are quite inaccurate at moderate-to-high 
Péclet regimes as they completely ignore the underlying streamlines that map the inlets to 
the outlets of a given pore (Mehmani et al. 2014).  Jha et al. (2011) proposed a deterministic 
mapping of incoming particles to the outlet throats, intendedly along the streamlines, in an 
attempt to generalize the rules developed by Bruderer and Bernabé (2001). The approach 
was limited to pores with a coordination number of four or less, and ignored mixing due 
to molecular diffusion. Despite being attractive due to its simplicity, the mapping neglected 
spatial orientations of the inlet throats, and consequently the interaction between infl owing 
streams, and was therefore less predictive (Mehmani et al. 2014).

The mixing problem within pores has additionally received quite a bit of attention from the 
fi eld of fracture-network modeling (e.g., Berkowitz et al. 1994, Park and Lee 1999; Park et al. 
2001a,b; Johnson et al. 2006). Although in this context, the “pores” correspond to the juncture 
at which two fractures intersect. Park and Lee (1999) derived physically sound, effi cient, and 
accurate transition probabilities for mapping particles from the inlets to the outlets of fracture 
junctions. In doing so, they conceptualized partial mixing at fracture junctions as a one-
dimensional problem amenable to analytical treatment (Fig. 4iii). While accurate for fracture 
networks, the mixing equations of Park and Lee (1999) are not applicable to 3-D networks 
of porous media. This is because fracture junctions are essentially 2-D cross-shaped “pores”, 
which are geometrically simpler than the 3-D pores with non-planar throat orientations found 
in porous media. 

In an effort to accurately capture partial mixing within pores and shear dispersion within 
throats, Mehmani et al. (2014) and Mehmani (2014) developed two pore-network models, 
respectively: the streamline splitting method (SSM) and superposing transport method (STM). 
These models were developed with the aim of exploring the possibility of capturing the pore-
scale physics discussed above under an Eulerian framework. The insistence on the models being 
Eulerian was because, in the context of pore-network modeling, such a framework is generally 
computationally more effi cient than a Lagrangian counterpart, albeit possibly less accurate. 
Therefore, the goal was to fi nd an appropriate balance between acceptable predictive accuracy 
and computational effi ciency. To satisfy the latter, both models used MCM as the starting point 
for their development. In MCM, a single concentration value is assigned to every pore, which 
implicitly assumes perfect mixing within them, independent of the local Péclet regime. Species-
balance equations are then written in every pore, and solved for the pore concentrations. To 
circumvent the perfect mixing assumption, SSM divides the volume of the pores into smaller 
compartments (or pockets) and assigns different concentration values to each compartment. The 
number of compartments within a pore is equal to the number of inlets of that pore, as each inlet 
may carry with it fl uids with different concentrations that need to be kept separate. However, 
mass transfer (or mixing) between two adjacent compartments within the same pore is allowed, 
which takes place purely due to molecular diffusion (perpendicular to the streamlines). Unlike 
Park and Lee (1999), pore-wall effects on the mixing process were also taken into account. The 
outlets of each compartment are determined by “splitting” the infl owing “streams” between 
the outlet throats, using a constrained optimization algorithm; which was shown to be also 
applicable in Lagrangian network models (Mehmani et al. 2014). The compartments are then 
regarded as control volumes and species balance is enforced in all of them. Figure 6 provides 
a conceptual picture underlying SSM and contrasts it to that of MCM. It was shown that SSM 
predictions were in very good agreement with direct CFD simulations as well as micromodel 
experiments, and computational costs were only marginally higher than MCM.
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On the other hand, the focus in STM is placed on shear dispersion due to the non-uniform 
velocity profi les within throats. This important pore-scale process is ignored in MCM as it 
assumes throats to be volumeless, which causes the solute to instantaneously transport from 
one pore to the next. In STM, elementary species rate expressions are constructed for each 
throat, as a function of their aspect ratio (i.e., diameter over length). These elementary rate 
expressions are then used to perform space-time superpositions across the pore network. This is 
accomplished by recording pore concentrations as they dynamically evolve during a simulation, 
which makes it similar to, but much more general than, the model developed by Martins et 
al. (2009) (the latter ignores shear dispersion and molecular diffusion). The superpositions in 
STM have the effect of performing convolutions of the elementary rate expressions across the 
pore network. This makes STM useful in other fi elds such as signal transmission in electrical 
engineering. The obvious limitation of STM is that it is applicable to linear transport problems 
only. This excludes scenarios with non-linear fl uid–mineral reactions such as those encountered 
in CO2 sequestration. But, for linear problems, the method was verifi ed against direct CFD 
simulations and simple convolution integral expressions. It was additionally validated against 
longitudinal dispersion experiments for unconsolidated bead packs from the literature.

Yet a fi nal question remains to be answered: what is the actual magnitude of the 
improvements imparted to the prediction of a parameter of interest by incorporating these 
additional pore-scale details into our network models? After all, modeling efforts should ideally 
seek ultimate simplicity while disposing of unnecessary complexity. Mehmani et al. (2014) 
showed that the impact of pore-level mixing assumptions, partial vs. perfect, is very signifi cant 
in ordered media (e.g., micromodels), but comparatively insubstantial in 3-D disordered 
granular media (e.g., sandstones). In fact, the average difference between the concentration 
fi elds obtained via SSM and the relatively less accurate MCM for disordered granular media 
was ~6% of the maximum concentration value (although the impact on upscaled transverse 

Figure 6. Schematic of a single pore p0 connected to four neighbors (whose own neighbors are not de-
picted). (a) Conceptual picture of MCM, where pores are considered as perfectly mixed reactors (to which 
single concentration values are assigned). (b) Conceptual picture of SSM, where pore volumes are divided 
into smaller compartments (or pockets denoted by pk) in order to account for partial mixing within pores 
(the depiction is an abstract, rather than literal, representation of the splitting of streamlines) [Used by 
permission of John Wiley & Sons, Inc., modifi ed after Mehmani Y, Oostrom M, Balhoff MT (2014), A 
streamline splitting pore-network approach for computationally inexpensive and accurate simulation of 
transport in porous media, Water Resources Research, Vol. 50, Issue 3, p. 2488–2517, Fig. 2. ©2014. 
American Geophysical Union. All Rights Reserved].
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dispersion coeffi cients is yet to be studied). A similar conclusion was drawn by Park et al. 
(2001a,b), who used PT to study the impact of various mixing assumptions (perfect mixing 
vs. no mixing) at fracture junctions on overall macroscopic transport behavior in ordered and 
disordered (2-D) fracture networks. They found that mixing assumptions have a larger impact 
in ordered media compared to random media (i.e., less than 5% of fracture junctions were 
affected in random media), and they attributed this to the lower effective coordination number 
and higher inlet fl ux ratios, at fracture junctions, in random networks. Despite the various 
differences between the two media (porous vs. fractured), the conclusions appear to be the 
same: for disordered (granular/fractured) media the model with the simpler description of 
pore-level mixing is the one that is preferred (e.g., MCM).

On the other hand, Mehmani (2014) showed that the incorporation of shear dispersion 
within throats in network models of disordered granular media is rather important at high 
Péclet numbers (>100). Namely, longitudinal dispersion coeffi cients predicted by STM 
undergo a ~2.5-fold improvement compared to MCM. This result corroborates earlier works 
that used PT to simulate longitudinal dispersion (Acharya et al. 2007a; Jha et al. 2011). A 
more important conclusion drawn using STM was that all Eulerian network models, including 
STM, are inherently limited at suffi ciently high Péclet numbers when applied to ordered 
media (e.g., micromodels). This was demonstrated by simply conceptualizing a straight 
tube under purely advective transport, as an equivalent 1D “network” (or string) of shorter 
tubes (Fig. 7a). The concentration profi les obtained from STM and MCM were shown to be 
representative of neither of the analytically known fl ux-averaged or cross-sectional-averaged 
concentration profi les (Fig. 7b). Even worse was the fact that simulated profi les were shown 
to converge towards a Gaussian distribution with an increase in the number of tube segments 
traveled. This is known to be impossible under a purely advective regime (Fig. 7c). It is 
known from Taylor–Aris theory that in the presence of molecular diffusion (no matter how 
small its contribution) a 2

L ~ PedD  asymptotic scaling is expected from this system (DL is the 
longitudinal dispersion coeffi cient, and Ped is the Péclet number); similar to ordered media 
(Edwards et al. 1991). Instead, an Eulerian network model (e.g., STM) would yield a scaling 
that is closer to L ~ PedD  at high Pe ,d since Gaussian profi les are reached not because of 
molecular diffusion, but because of cross-sectional smearing of concentrations at the “pores” 

Figure 7. (a) Schematic of a circular tube under pure advection (constant inlet concentration), divided into 
segments along the dashed lines. (b) Concentration profi les (at different times) along the duct, including: true 
cross-sectional average (dashed-dotted line), true fl ux-averaged (dashed-plus line), simulated STM (thick 
solid line), and simulated MCM (thin solid line). Arrow of time annotated, and  is x-normalized against the 
length of 50 segments. (c) Convergence of STM profi les towards a normal distribution, with an increase in the 
number of tube segments traveled (annotated by NJ). x is normalized by the distance travelled by the (tube) 
centerline velocity (=V0t ) [Used by permission of author, from Mehmani (2014), Modeling of single-phase 
fl ow and solute transport across scales, PhD dissertation, University of Texas at Austin, Fig. 4.12].
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(denoted by dashed lines in Fig. 7a). In other words, solute particle “memories” are effectively 
erased upon their arrival at the pores (i.e., Markovian process), whereas in reality they are 
retained over a given distance that depends on the local Péclet regime. This distance is larger 
than the length of a single throat at suffi ciently high Péclet numbers. The foregoing problem 
is not just specifi c to Eulerian network models. Lagrangian methods that draw throat transit 
times from the same distribution, that is stationary in time, are equally limited. An example 
includes the CPT model developed by Sorbie and Clifford (1991). The implication is that the 
“simplest” model, capable of accurately capturing shear dispersion in ordered media, must 
preserve particle memories in passing them from the inlet to the outlet throats of a pore. This 
means that it is not just suffi cient to know how long a particle takes to transit a given throat, but 
also the cross-sectional position of that throat whence it exits. Such detailed information seems 
only resolvable in a pore network, with adequate simplicity, under a Lagrangian framework.

Reactions. Comprehensive reviews on modeling reactive transport can be found in 
Steefel and MacQuarrie (1996), Steefel et al. (2005, 2013). Reactions at the pore-scale can 
be divided into those occurring within the fl uid bulk, referred to as homogeneous reactions, 
and those that take place at the fl uid-mineral interface, referred to as heterogeneous reactions. 
Homogeneous reactions themselves consist of zero-order decay processes independent of 
species concentrations, and higher-order concentration-dependent reactions that occur due to 
the mixing of two or more solute species. Homogeneous reactions are commonly modeled 
as instantaneous processes at equilibrium, while heterogeneous reactions as kinetically 
controlled processes. In direct pore-scale models, the former is described via source terms 
in the solute balance equation (Eqn. 2a), and the latter via appropriate boundary conditions 
at the fl uid–mineral interface (Eqn. 2b). In Eulerian network models, where pores are viewed 
as continuously stirred tank reactors, all reaction types (as well as adsorption) are almost 
invariably described via source terms in the mesoscale solute balance equation (Acharya et al. 
2005, 2007b; Li et al. 2006, 2007a,b; Kim et al. 2011, 2012; Mehmani et al. 2012; Raoof et 
al. 2013; Nogues et al. 2013). This effectively ignores concentration gradients and transport-
limited effects on reaction rates at the scale of individual pores. Depending on the application, 
this may or may not be a good assumption. Li et al. (2008) showed that for typical fl ow 
and chemical/mineralogical conditions relevant to geologic CO2 sequestration, pore-level 
perfect mixing appears, for all practical purposes, appropriate. Their conclusion was based on 
molecular diffusion coeffi cient and activity of the hydrogen ion among other assumptions. In 
problems where these parameters assume very different values, transport-limited effects can 
become important and the perfect mixing assumption inappropriate.

The network models developed by Algive et al. (2010, 2012) and Varloteaux et al. 
(2013) are the only known exception, in which concentration gradients due to fl uid–mineral 
reactions are implicitly taken into account by calculating effective transport parameters for 
the pores and throats. However, their model is limited to long-time asymptotic regimes, 
where changes in the concentration fi eld are slow with time. Moreover, none of the above 
mentioned models accounts for diffusion-limited mixing reactions that occur when two fl uids 
with differing chemical compositions come into contact within a pore. In SSM, discussed in 
Diffi culties and sources of error, the rate of mass transfer between two adjacent compartments 
within a pore (pk1 and pk2 in Fig. 6b) is computed via solving a local bounded Riemann 
problem. Mehmani et al. (2014) proposed the possibility of modifying this local problem 
(via appropriate initial/boundary conditions) to derive mass transfer rates in the presence of 
mixing-induced reactions. For reactions at the fl uid–solid interface within the throats, one may 
derive modifi ed elementary rate expressions that can be used in the STM model discussed in 
Diffi culties and sources of error (although limitations for ordered media still persist). This 
would complement the long-time asymptotic method of Algive and coworkers, for short-time 
pre-asymptotic regimes. Finally, particle tracking (PT) can be used to describe all foregoing 
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reactions types at the pore scale in high detail. This requires the development of non-trivial 
stochastic particle interaction criteria and collision probabilities between fl uid–fl uid and solid–
fl uid species (Gillespie 1977; Benson and Meerschaert 2008; Dentz et al. 2011). However, the 
adoption and implementation of PT in pore networks for accurate simulations of geochemical 
reactions have unfortunately been scarce.

HYBRID MODELING

Flow and reactive transport phenomena in the subsurface often span a wide range of spatial 
scales (nanometer to kilometer), which renders the development of predictive models capable 
of accurately bridging them a formidable task. Macroscopic parameters (e.g., permeability) 
or closure relations (e.g., capillary pressure vs. saturation) are commonly extracted from 
pore-scale modeling or experiments on representative samples of the real medium, followed 
by their direct implementation into continuum-scale simulators. While such an approach is 
appropriate for situations in which a clear separation between scales exists, it may lead to large 
errors otherwise (Kechagia et al. 2002; Tartakovsky et al. 2008b; Battiato and Tartakovsky 
2011). Mixing induced precipitation ensuing form a bimolecular reaction is one such example 
(Battiato et al. 2009). In these cases a dynamic communication between the pore and the 
continuum scales seems to be required.

Li et al. (2006, 2007a,b) used a pore-network model to study reaction kinetics of kaolinite 
and anorthite in the context of geologic carbon sequestration. They demonstrated that reaction 
rates obtained from continuum-scale representations of transport and/or using volume/fl ux-
averaged concentrations in reaction rate expressions leads to large errors, sometimes even 
wrongly predicting the direction of the reactions (i.e., precipitation vs. dissolution). Although 
their study was qualitative in nature, using 3-D regular lattice networks, it provided an 
explanation for the commonly reported discrepancy between reaction rates observed at the fi eld 
scale and those obtained from well-mixed batch experiments on crushed samples. Namely, 
transport limitations at the pore scale control overall reaction rates, which are non-existent 
under well-mixed conditions in batch experiments. Effects of fl ow rate and reactive cluster size/
abundance were also studied, and it was concluded that the higher the degree of incomplete 
mixing (i.e., spatial variability of concentration) the higher the scaling error. Incomplete mixing 
was found to be strongest at medium fl ow rates (or Péclet numbers). Kim et al. (2011) and Kim 
and Lindquist (2012) extended the work of Li and coworkers using networks extracted from 
XMT images of real sandstones. They were able to determine surface mineral distributions 
from the images allowing for better quantitative analysis. Similar conclusions were drawn 
regarding the “lab–fi eld discrepancy”, and an approximately power-law scaling of reaction rates 
vs. fl ow rate was reported for anorthite, while a more complex scaling emerged for kaolinite. In 
the context of fi ltration combustion in porous media, Lu and Yortsos (2005) similarly observed 
that spatially averaged macroscopic reaction rates were very different (discrepancies of a factor 
of two or higher) than those determined from using averaged variables in microscopic reaction 
rate expressions. They attributed this to the strong infl uence of microscopic heterogeneities on 
macro scale behavior. Recently, Molins et al. (2012) conducted sophisticated direct pore-scale 
simulations of calcite dissolution, and showed that pore-scale heterogeneities can result in an 
underestimation of reaction rates, due to mass transport limitations, even when total reactive 
surface area and porosity are held constant between samples.

Kechagia et al. (2002) demonstrated that for reactive transport with fast/fi nite kinetics, 
homogenization of microscopic equations via volume averaging does not hold except at the 
limit of macroscopic equilibrium. They further showed that even under these circumstances an 
eigenvalue problem enforces a coupling between the micro and the macro scales. A systematic 
study was performed by Battiato and Tartakovsky (2011) to identify transport regimes 
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(characterized by the Damköhler (Da) and Péclet (Pe) numbers), in which a purely continuum 
description of advection-diffusion with nonlinear surface reactions breaks down. They used 
multiple-scale expansions to upscale the pore-scale equations, and presented their results 
in the form of a Pe–Da phase diagram. The results were in agreement with an earlier work 
that used volume averaging (Battiato et al. 2009), which substantiated their independence 
from the specifi c upscaling method employed. A recent work by Boso and Battiato (2013) 
extended this analysis to three-component systems undergoing two homogeneous and one 
heterogeneous reactions (all reversible). It is interesting to note, that Molins et al. (2012) 
located their simulations on the aforementioned Pe–Da phase diagram and determined their 
correspondence to a case in which spatial scales were coupled. While all foregoing examples 
focused on geochemical reactions, a coupling between scales is also observed in problems 
involving viscous and density-driven instabilities in multiphase and miscible displacement 
among others (Tartakovsky et al. 2008c).

The implications of the foregoing studies (among others) have given rise to a new class of 
modeling approaches referred to as “hybrid multiscale methods” (Scheibe et al. 2007), in which 
micro- and macro-scale simulations are simultaneously performed on the same computational 
domain. Balhoff et al. (2007) were one of the fi rst to couple a pore-scale model to the continuum. 
However, their iterative coupling strategy had strong limitations in terms of fl exibility and 
effi ciency. These limitations were later lifted by Balhoff et al. (2008) through the introduction 
of mortars. Mortars are fi nite-element function spaces that ensure the (weak) continuity of fl ux 
at the interface between two coupled models (e.g., pore-scale and continuum-scale), and are 
the essential component of a highly fl exible, effi cient, and accurate non-overlapping domain 
decomposition method (Bernardi et al. 1994; Arbogast et al. 2000; Peszynska et al. 2002). 
Subsequently, Sun et al. (2012a) showed that mortars can be used as accurate upscaling tools for 
pore-scale models in obtaining macroscopic properties (e.g., permeability). They demonstrated 
that a large heterogeneous pore-scale domain can be decomposed along structural discontinuities 
and coupled via mortars to closely approximate the true permeability. Sun et al. (2012b) 
developed a single-phase reservoir simulator, in which Darcy grids in the near-well region were 
substituted with pore-scale models (Fig. 8ii). The study focused on upscaling strategies for the 
permeability fi eld of the near-well region. In the foregoing studies, application of mortars was 
limited to linear, single-phase Newtonian fl ow without species transport and computational 
aspects were left unexamined. These issues were later addressed by Mehmani et al. (2012) and 
Mehmani and Balhoff (2014), who extended the use of mortars to non-linear (power-law) fl ow 
and (passive/reactive) solute transport and demonstrated computational effi ciency and parallel 
scalability of their new algorithms (Fig. 8iii). The application of the above hybrid mortar 
methods is most appropriate when a tight coupling between spatial/temporal scales exists and a 
characterization of the pore-scale subdomain is available. This scenario is most likely to occur 
in a “skin-deep" region around wellbores (e.g., matrix acidization, and CO2 leakage through 
wellbore cement), in which fl uids are furthest away from equilibrium and direct access to pore-
scale samples for geometric characterization is available.

Tartakovsky et al. (2008a) non-iteratively coupled the pore scale and the continuum in a 
diffusion-reaction system using an SPH formulation for both scales. They were able to show 
that their hybrid method produced reliable predictions, compared to modeling purely at the pore 
scale, of mixing-induced precipitation, which is typically not amenable to a purely continuum 
description as the reactions occur over the length of a few grain diameters (Fig. 8i). While the 
non-iterative nature of the method makes it very attractive from a computational standpoint, the 
method lacks fl exibility in the sense that it requires both scales to be formulated using SPH. 
Advection was additionally ignored in that work. A novel overlapping method for coupling pore-
scale inclusions to the surrounding continua was developed by Battiato et al. (2011) and was 
successfully verifi ed for the case of Taylor dispersion in a reactive fracture. While the method 
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is more general compared to the previous work (it included advection and was not limited to 
SPH), it appears to be limited to rather small pore-scale point inclusions that are dependent on 
the underlying macro-grid structure of the domain. The specifi c coupling algorithm used can 
also be rather computationally expensive, since the differential-algebraic system was solved by 
iterating between the differential and algebraic parts, rather than solving the system as a whole. 
Roubinet and Tartakovsky (2013) built upon the work of Battiato et al. (2011) and developed a 
non-overlapping hybrid method in 1D, in which the computational performance was enhanced 
by solving a global (instead of a sequential) differential-algebraic system. The method used 
fi nite volumes to discretize both the continuum- and the pore-scale subdomains, and introduced 

Figure 8. (i) Mixing-induced mineral precipitation (represented by black particles) obtained from SPH 
simulations on a (ia) fully pore-scale domain, and (ib) a hybrid domain with a pore-scale region sand-
wiched between two continuum regions [Used by permission of the Society for Industrial and Applied 
Mathematics, from Tartakovsky AM, Tartakovsky DM, Scheibe TD, Meakin P (2008), Hybrid simula-
tions of reaction-diffusion systems in porous media, SIAM Journal on Scientifi c Computing, Vol. 30, p. 
2799–2816, Fig. 5. Copyright ©2008 Society for Industrial and Applied Mathematics. Reprinted with 
permission. All rights reserved]. (iia) Pressure, and (iib) fl ow fi elds obtained from the coupling of a near-
well pore-scale region to the surrounding continuum using mortars [Used by permission of the American 
Chemical Society, from Sun et al. (2012b), Hybrid Multiscale Modeling through Direct Substitution of 
Pore-Scale Models into Near-Well Reservoir Simulators, Energy & Fuels, Vol. 26, p. 5828–5836, Fig. 6 
and 7. Copyright © 2012, American Chemical Society]. (iiia) Pressure, and (iiib) concentration fi elds ob-
tained on a (3-D) hybrid domain (results collapsed onto 2-D) with non-matching continuum grids [Used by 
permission of the Society for Industrial and Applied Mathematics, from Mehmani Y, Balhoff MT (2014), 
Bridging from pore to continuum: A hybrid mortar domain decomposition framework for subsurface fl ow 
and transport, Multiscale Modeling & Simulation, Vol. 12, p. 667–693, Fig. 11. Copyright © 2014 Society 
for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved]. (iv) Schematic of 
the heterogeneous multiscale method (HMM) for performing hybrid two-phase drainage simulations [Used 
by permission of Springer and Advances in Applied Mathematics, Modeling, and Computational Sciences, 
from Chu J, Engquist B, Prodanoviඹ M, Tsai R (2013), A multiscale method coupling network and con-
tinuum models in porous media II—Single-and two-phase fl ows. In: Advances in Applied Mathematics, 
Modeling, and Computational Sciences, p. 161–185, Fig. 4. With kind permission from Springer Science 
and Business Media]. Shaded rectangles represent network models, which are used to compute the pressure 
fi eld (those depicted at the boundaries of macroscopic control volumes) and advance the saturation front 
(those oriented normal to the displacement front).
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additional unknowns for each grid on either side of the interface. This dependence of interface 
unknowns on the number of interface grids can render the approach quite expensive for large 
problems. It is also noteworthy, that the approach seems to be a special case of the Global 
Jacobian methods of Ganis et al. (2012) and Mehmani and Balhoff (2014).

Chu et al. (2012) proposed an approach based on the heterogeneous multiscale method 
(HMM), in which macroscopic conservation equations are written assuming unavailability 
of constitutive fl ow equations (e.g., Darcy’s law) at the macro scale. The missing data 
were instead supplied from locally sampled pore-network simulations across the domain. 
Specifi cally, pore-scale models were used as providers of accurate in/out-fl uxes at the 
boundaries of macroscopic control volumes. Chu et al. (2013) extended this work to two-
phase fl ow problems, where pore-network models were used to track macroscopic two-phase 
drainage fronts (Fig. 8iv). While the method is a superior alternative to pure continuum-scale 
models in cases where local effects are dominant, its extension to problems with strong fl uid–
mineral reactions (where a macroscopic source/sink term is unknown and highly coupled to 
transport itself) is not obvious. Sheng and Thompson (2013) developed a dynamic coupling 
algorithm for two-phase fl ow, in which network models were embedded at the center of 1D 
macroscopic control volumes. The network models provided relative permeability values to 
the continuum model, while the continuum model provided fractional fl ow rates as boundary 
conditions to the network model. The network model was specially designed to handle these 
non-trivial boundary conditions. The large time-scale discrepancy between the pore scale and 
the continuum scale was addressed by performing successive steady-state simulations at the 
pore scale. The work showed that macroscopic and pore-scale saturations do not necessarily 
agree, and highlighted the diffi culty in enforcing such an agreement. Tomin and Lunati (2013) 
developed a hybrid algorithm based on the multiscale fi nite volume (MsFV) method. In this 
approach the macroscopic domain is discretized into primal control volumes, upon which a 
complementary dual grid is superposed. Local pore-scale problems are then solved on the dual 
grid, in order to construct a set of bases as well as correction functions; these can be thought 
of as pore-scale closures for the continuum model. Global balance equations are then solved 
by forming a linear combination of these bases/correction functions and computing their 
corresponding multipliers.  The continuum solution is then used to construct a conservative 
velocity fi eld at the pore scale for advancing tracer concentrations and/or phase saturations. 
The hybrid method was successfully verifi ed against fully pore-scale simulations for tracer 
transport and stable/unstable drainage problems.

The essence of all hybrid methods discussed is a “two-way communication” between the 
pore scale and the continuum. Hybrid methods are a relatively recent development compared 
to single-scale modeling strategies such as molecular dynamics (MD), pore-scale modeling, 
and reservoir simulation. Naturally, their development has been based upon the vast diversity 
of single-scale methods and various combinations thereof. Consequently, they themselves 
are very diverse in the ways they approach the problem, which might raise the obvious 
question as to which hybrid method is most appropriate for a given problem. Scheibe et al. 
(2015) have attempted to provide a general road map for choosing an appropriate hybrid 
strategy, referred to as the Multiscale Analysis Platform (MAP), depending on the degree 
of complexity of the hydrological problem at hand (i.e., degree of separability between 
temporal/spatial scales). MAP classifi es various hybrid methods into separate “motifs”, and 
leads its user (with a specifi c application in mind) towards a suitable motif by asking a series 
of questions regarding the nature of the problem to be solved (Fig. 9). Such a classifi cation 
additionally provides a useful context, within which the ever-increasing multiscale methods 
developed in the literature can be categorized.
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CONCLUSIONS

Recent advances in rock imaging technology (e.g., XMT) have made it possible to 
resolve the complex pore-space geometry in suffi cient detail, to the point that direct numerical 
simulations of various pore-scale processes are becoming commonplace and an area of active 
research. In addition, novel micromodel fabrication and measurement techniques (Werth et al. 
2010; Karadimitriou and Hassanizadeh 2012) are allowing for an unprecedented possibility of 
quantitative comparison between modeling and experiments. However, our recent capability to 
resolve much of the pore-scale details with high accuracy, both experimentally and numerically, 
does not detract from the importance of mesoscale (or pore-network) models and the role they 
play in bridging the pore scale to the continuum. On the contrary, we can now use observations 
from such detailed experimental and direct numerical results to increase the accuracy of 
traditional network models and remove some of their ambiguity. The signifi cance for doing 
so is threefold: a) it allows us to translate our detailed observations to an intermediate scale 
that is simple enough to understand, b) forces us to determine what features of the problem 
are the most essential so we can discard unnecessary details, and c) regardless of advances in 
computational performance, mesoscale models will always be one scale ahead of direct pore-
scale methods. While improving network models based on detailed numerical/experimental 
observations is often successful, there are however limitations to this process. In the fi rst part 
of the chapter, we tried to emphasize this point by providing two examples in the context of 
single-phase solute transport. 

In the fi rst example, we demonstrate that modifi cations to a traditional Eulerian network 
model allows it to capture partial mixing within pores with higher accuracy, while preserving 
computational effi ciency and relative simplicity. In the same example, we also show that the 
need for accurately capturing partial mixing within pores depends on the porous medium. 
If the porous medium is ordered, partial mixing is important. But in disordered media (e.g., 
sandstones), partial mixing does not seem to be as signifi cant, which means that we do not need 

Figure 9. Flowchart of the multiscale analysis platform (MAP) [Used by permission of John Wiley and 
Sons, from Scheibe TD, Murphy EM, Chen X, Rice AK, Carroll KC, Palmer BJ, Tartakovsky AM, Bat-
tiato I, Wood BD (2015), An analysis  platform for multiscale hydrogeologic modeling with emphasis on 
hybrid multiscale methods, Groundwater, Vol. 53, p. 38–56, Fig. 3. © National Ground Water Association].
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to add this additional complexity to our mesoscale model. In the second example, we similarly 
show that modifi cations of a traditional Eulerian network allows it to capture shear dispersion 
within throats, and improves predictions of macroscopic dispersion in disordered (granular) 
media. However, when the porous medium is ordered, no amount of modifi cation appears 
to prevent it from producing the wrong DL vs. Ped scaling due to the Eulerian nature of the 
network model. Thus, a Lagrangian network model seems to be the next simplest mesoscale 
description. Similar conclusions may or may not hold for problems involving multiphase fl ow, 
geochemical reactions, adsorption, etc. However, the current state of computational power and 
experimental advances are allowing for the possibility of investigation into these questions 
more than ever.

On the other hand, the practical need to perform large-scale predictions requires pore-scale 
information to be translated to the continuum scale. While traditional upscaling approaches are 
successful in various scenarios, their applicability is rather limited when insuffi cient separation 
between scales exists. Overwhelming evidence in the literature hints towards this being quite 
common in the presence of strong fl uid-mineral reactions; rendering averaged reaction rates 
transport-limited at the pore scale. Another example involves viscous and density-driven 
instabilities in multiphase and miscible displacement scenarios (Tartakovsky et al. 2008c). 
In recent years, various “hybrid” models have been developed as a means of simulating such 
scenarios, with the typical premise that the break-down of macroscopic continuum equations 
occurs locally. The essence of all such methods is a “two-way communication” between the 
pore and the macro scales, accomplished by incorporating models of both scales into the 
same computational domain. A useful classifi cation given by Scheibe et al. (2015) facilitates 
one in choosing a suitable hybrid method, from a large selection developed in the literature, 
depending on the particular application at hand. As developments in both pore-scale and 
hybrid models continue into the future, the hope is for all these efforts to converge towards 
a deeper understanding of the scale transition problem and arrive at a predictive description 
(modeling and/or theory) of the relevant processes. Such an understanding would undoubtedly 
be indispensable in tackling currently pressing and highly challenging problems such as the 
safe sequestration and storage of anthropogenic CO2, increasing hydrocarbon recovery from 
mature formations, and clean-up and remediation of nuclear waste repositories.
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