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INTRODUCTION

Important geoscience and environmental applications such as geologic carbon storage, 
environmental remediation, and unconventional oil and gas recovery are best understood in 
the context of reactive fl ow and multicomponent transport in the subsurface environment. The 
coupling of chemical and microbiological reactions with hydrological and mechanical processes 
can lead to complex behaviors across an enormous range of spatial and temporal scales. These 
coupled responses are also strongly infl uenced by the heterogeneity and anisotropy of the 
geologic formations. Reactive transport processes can change the pore morphology at the pore 
scale, thereby leading to nonlinear interactions with advective and diffusive transport, which 
can strongly infl uence larger-scale properties such as permeability and dispersion. Therefore, 
one of the greatest research challenges is to improve our ability to predict these processes across 
scales (DOE 2007). The development of pore-scale experimental and modeling methods to 
study reactive processes involving mineral precipitation and dissolution, and biofi lm dynamics 
allows more fundamental investigation of physical behavior so that more accurate and robust 
upscaled constitutive models can be developed for the continuum scale.

A pore-scale model provides fundamental mechanistic explanations of how biogeochemical 
processes and pore-scale interfacial reactions alter fl ow paths by pore plugging (and dissolving) 
under different geochemical compositions and pore confi gurations. For example, dissolved 
CO2 during geological CO2 storage may react with minerals in fractured rocks, confi ned 
aquifers, or faults, resulting in cementation (and/or dissolution) and altering hydrodynamics of 
reactive fl ow. This can be observed in a natural analogue where primary porosity in sandstone 
is cemented by carbonate precipitates, affecting dissolved CO2 fl ow paths at the Little Garde 
Wash Fault, Utah (e.g., Fig. 1a-b). Several other examples demonstrating macroscopic 
characteristics of calcium carbonate (CaCO3) precipitation in Figure 1 include an elongated 
concretion along the groundwater fl ow direction, CaCO3 precipitation along the vertical 
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pathway sealed by a low-permeability layer, and calcite-cemented hanging-wall damage/mixed 
zone impacting permeability and fl ow paths. Continuum-scale reactive transport modeling has 
been studied for mineral precipitation and its impact on permeability (e.g., Steefel and Lasaga 
1990, 1994). The numerical studies suggest that diffusion-controlled precipitate can armor 
fractures and limit the amount of mixing and subsequent reaction (Steefel and Lichtner 1994, 
1998). Recently, mineral precipitation and its impact on fl ow alteration at the pore scale was 
evaluated under representative fl ow and mixing conditions in porous media (Tartakovsky et al. 
2008; Zhang et al. 2010a; Yoon et al. 2012; Boyd et al. 2014). In these works, experimental and 
numerical pore-scale reactive transport investigations demonstrated that both thermodynamic 
and kinetic constraints affect precipitation rates, the distribution of mineral polymorphs, and 
the corresponding extent of porosity occlusion. Elemental analysis also suggested that crystal 
growth rates are affected by solution chemistry and location of reaction zones. In addition, 
other experimental results revealed the important effect of mineral formation on the estimation 
of diffusion coeffi cient (Navarre-Sitchler et al. 2009), overall reactive surface area (Navarre-
Sitchler and Brantley 2007), and reactive surface area within connected pores (Landrot et 
al. 2012). Hence, accuracy of large-scale rate estimates depends on the type of reaction, 
pore geometry, reactive surface characteristics, reaction kinetics, macroscopic concentration 
gradient, and interaction between reaction and fl ow paths. As suggested in Battiato et al. 
(2011) and Steefel et al. (2013), Darcy-scale simulation with effective parameters may not 
account for nonlinear reactive transport processes associated with localized precipitation and 
dissolution of mineral phases. 

Another notable example of porosity and permeability alteration due to reactive transport 
is microbial growth and the associated biogeochemical reaction products, such as biominerals. 
Microbial growth including extracellular polymeric substances (EPS) can signifi cantly reduce 
porosity and permeability by pore plugging (Davery et al. 1998; Zhang et al. 2010b; Kirk et 
al. 2012; Yoon et al. 2014). Additionally, biomineralization induced by urea hydrolysis and 
denitrifi cation processes (Nemati and Voordouw 2003; Dejong et al. 2006; Martin et al. 2013; 
Zhu et al. 2013) altered porosity and fl ow patterns signifi cantly. On the other hand, organic acids 
(e.g. acetic acid, lactic acid, etc.) that are produced during microbial growth can dissolve rocks, 
resulting in increasing in porosity and permeability (Adkins et al. 1992). It is generally believed 
that most subsurface microorganisms are attached onto the surface of the solid phase as a 

Figure 1. Examples of various mineral precipitation characteristics. Microphotographs of (a) unaltered 
and (b) altered sandstone in the vicinity of a natural CO2 seepage conduit (Little Grand Wash Fault, Utah) 
[Used by permission of the American Chemical Society, from Altman et al. (2014) Journal of Physical 
Chemistry C, Vol. 118, Fig. 2, p. 15106]. Primary porosity in blue epoxy in (a) is altered by carbonate pre-
cipitates shown in (b). (c) Uniform elongate concretion from the Sierra Ladrones Formation (ancestral Rio 
Grande sediments, see Mozley and Davis (2005) for further information). (d) CaCO3 precipitation along 
the vertical pathway sealed by a thin Mancos shale layer (Carmel Formation, Utah). (e) Calcite-cemented 
hanging-wall damage/mixed zone of the Sand Hill Fault, New Mexico (scale: >10 m).
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biofi lm, a complex mixture of multiple active microbial species, inert biomass, and extra-cellular 
polymeric substances (Rittmann 1993; Rittmann and McCarty 2001; IWA Task Group 2006; 
Vilcáez et al. 2013). Although volume-averaging theory can be used to derive continuum-scale 
models, idealized geometrical assumptions about the porous media and the biofi lm are necessary 
(Golfi er et al. 2009). Instead, pore-scale numerical models capable of handling complex dynamic 
solid–liquid boundaries have been developed to couple fl ow, solute transport, and biofi lm growth 
at the pore scale. Since biofi lm dynamics at the pore scale can affect macroscopic properties such 
as porosity, permeability, and dispersivity (Taylor and Jaffé 1990; Vandevivere and Baveye 1992; 
Seifert and Engesgaard 2007; Seifert and Engesgaard 2012; El Mountassir et al. 2014; Yoon et 
al. 2014), the fundamentals of biogeochemical processes at the pore scale must to be understood 
if we are to address practical fi eld-scale problems.

Recent advances in multiscale imaging techniques for the analysis of complex pore 
structures and mineralogies have revolutionized our ability to characterize geomaterials 
quantitatively at the pore scale (e.g., Gualda et al. 2010). By combining a suite of imaging 
techniques, it is now largely possible to understand how surface chemistry and pore topology 
impact reactive transport processes affecting the change of porosity and permeability (e.g., 
Landrot et al. 2012; Yoon et al. 2012). Similar recent advances in computational power and 
methods have led to the development of a number of pore-scale models for fl ow and reactive 
transport (see reviews in Meakin and Tartakovsky 2009; Steefel et al. 2013). To summarize, 
these models include lattice Boltzmann (LB) (Kang et al. 2003, 2006, 2010), smooth particle 
hydrodynamics (SPH) (Tartakovsky et al. 2007, 2008, 2009), direct numerical simulation 
(DNS) (Flukiger and Bernard 2009; Molins et al. 2012, 2014), hybrid LB-DNS (Yoon et al. 
2012) and pore network models (Li et al. 2006; Kim et al. 2011). In this article we review 
approaches based on the lattice Boltzmann method (LBM) for pore-scale reactive transport 
models relevant to the impact of biogeochemical processes on the dynamic permeability 
evolution. 

The LBM, which was developed as an extension to lattice gas models for fl uid fl ows (Qian 
and Orszag 1995; Stockman et al. 1997; Chen and Doolen 1998), is well suited for studying 
hydrodynamics in complex geometries of porous and fractured media with a variety of reactive 
surface boundaries. Unlike the conventional computational fl uid dynamics at the continuum 
scale, the LBM employs a mesoscopic equation from a kinetic theory to determine macroscopic 
fl uid dynamics (Succi 2001). A basic introduction to the LBM for geoscientists and beginners 
including example (pseudo-) codes can be found in Sukop and Thorne (2007), Mohamad 
(2011), and open-source domains (Lattice Boltzmann methods 2015). LBM considers fl ow 
as a collective behavior of pseudo-particles residing at a mesoscopic level whose evolution is 
described by a discrete Boltzmann equation. Specifi cally, the collision term in the Boltzmann 
equation is approximated by the simple Bhathagar–Gross–Krook (BGK) method (Bhatnagar 
et al. 1954) or single relaxation time (SRT) model. The lattice Boltzmann Equation (LBE) can 
be obtained from the continuum Boltzmann equation with a BGK collision term by proper 
discretization in time, space, and momentum (Chen and Doolen 1998). The Navier–Stokes 
equation can be recovered in an incompressible limit using the Chapmann–Enskog multi-scale 
expansion technique (Wolf-Gladrow 2000). LBM can easily deal with complex boundaries 
using a simple bounce-back or modifi ed bounce-back scheme (He et al. 1997) in the fl uid 
particle distributions, and can be applied to multi-phase fl ow with phase transition (Chen and 
Doolen 1998) and particulate suspension fl ows (Ladd 1994; Joshi and Sun 2009). Since the LBE 
is an explicit time-stepping equation for the distribution function, it can be easily programmed 
on a computer. Based on the local nature of the kinetic reaction terms or processes, LBM is 
also suited for parallel computing. Recently a comparison of representative LB models for 
benchmark problems demonstrated a strong parallel scalability (Groen et al. 2013). 
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A number of studies have presented reactive transport models using LBM, focusing on 
crystallization processes (Miller et al. 2001; Kang et al. 2004; Lu et al. 2009), dissolution 
(Kelemen et al. 1995; Kang et al. 2002; Huber et al. 2008; Parmigiani et al. 2011; Chen et al. 
2014b), and biofi lm dynamics (Sullivan et al. 2005, 2006; Pintelon et al. 2009). In particular, 
Kang and co-workers have developed multicomponent reactive transport models assuming 
homogeneous reactions are instantaneous, and all heterogeneous reactions at the mineral–
water interface are kinetically controlled (Kang et al. 2002, 2003, 2006, 2007). LBM now 
has expanded capabilities for (reactive) transport processes by coupling with continuum-
based or DNS methods (e.g., fi nite-volume method (FVM), fi nite-element method (FEM), 
fi nite-difference method (FDM)). In this article, the lattice Boltzmann-based approaches are 
referred to as the LBM coupled with other techniques such as LB for fl ow and FVM for 
reactive transport. The main objective of this article is to present the current state-of-the-art 
in using LB-based approaches to simulate coupled fl ow and transport affecting pore structure 
change and fl ow feedback. In the following subsections we briefl y introduce reactive transport 
modeling of biogeochemical processes. LBM for reactive transport models will be presented 
in detail. We also describe recent advances in LB applications to multiphysics systems useful 
for multiphase fl ow and electrical transport, and coupled LB–DNS approaches for reactive 
transport models. Representative LB-based simulations will be reviewed to demonstrate its 
usefulness in pore-scale reactive transport processes and future research directions will be 
addressed.

REACTIVE TRANSPORT MODELING OF
BIOGEOCHEMICAL PROCESSES AT THE PORE SCALE

Multicomponent reactive transport models have been well outlined for a basic continuum 
theory for reactive transport (Lichtner 1985, 1996) and biofi lm modeling in water and 
wastewater treatment (Rittmann and McCarty 2001; IWA Task Group 2006). Recently, 
pore-scale reactive transport modeling has been actively developed and applied, which were 
fundamentally overviewed for multiphase fl ow and reactive transport models (Meakin and 
Tartakovsky 2009) and pore-scale processes during geologic carbon storage (Steefel et al. 
2013). In this section, the mathematical equations for reactive transport modeling at the pore 
scale will be briefl y described for the rest of article and key biogeochemical processes relevant 
to pore structure dynamics will be introduced. The primary aspects of a reactive transport 
model include (1) governing equations for fl uid fl ow, (2) transport equations for multiple 
species, (3) (bio)geochemical reaction models describing homogeneous reactions (reactions 
within a single phase) and heterogeneous reactions at the interface of different phases, and (4) 
the motion of the heterogeneous interface due to the reactions.

Fluid fl ow 

The fl uid fl ow in porous media is infl uenced by inertial, viscous, and body forces. In 
reservoirs and natural porous media systems where the compressibility of the fl uid is assumed 
small, the incompressible Navier–Stokes equations for the fl uid fl ow can be described by the 
conservation of momentum and mass:

  T
,p

t
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where u is the fl uid velocity vector,  is the fl uid density, p is the pressure,  is the dynamic 
viscosity of the fl uid, and F is the body-force density including all the effective external body 
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forces. In Equation (1) the left-hand side represents the inertial terms and the right-hand 
side is written in terms of the full rate-of-deformation (stress) tensor owing to, for example, 
concentration-dependent viscosity. This dependence couples the fl ow system to the reactive 
transport system where the time-dependent part of the acceleration term is retained because of 
the concentration dependence of the viscosity (e.g., Davidson et al. 2012). In this article we 
will treat the concentration- (or reaction-) dependent viscosity as a special case. 

If the viscosity is constant or independent of the species concentrations, the fl ow problem 
is uncoupled from the species transport. At low Reynolds numbers Re= |u|l / «1 where l is 
a characteristic length, the inertial terms can be neglected and under the steady conditions, the 
Stokes equation can be used to obtain the velocity fi eld at the pore scale: 

2 .p   u F (3)

The quasi-static formulation for the fl ow implies that the geometry of the solid phase 
changes slowly compared to the time scale for reactive transport unless the reactions will alter 
the geometry of the solid phase. We will separately treat the effect of biogeochemical reactions 
on the change of solid (including biofi lm) phase later. 

Multicomponent reactive transport

In the species transport equations at the pore scale, the detailed inclusion of fl uid fl ow 
at the pore scale allows us to model the diffusion by a simple Fickian form in contrast to a 
dispersion term at the continuum Darcy scale. For the i-th (ion) species, the reactive transport 
equation at the pore scale for an incompressible fl ow fi eld has a general form (Lichtner 1996):

i i ,
iC

R
t


  


J (4)

where Ci is the concentration of the i-th species, Ji is the species fl ux, Ri is the reaction rates 
at which the i-th species is produced, consumed, and decayed by (bio)chemical reactions. The 
total fl ux Ji consists of advection, diffusion, and electrochemical migration terms and can be 
described using the Nernst–Planck equation (Levich 1962):
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where Di is the diffusion coeffi cient of the i-th species, zi is the charge of the i-th species, 
F is the Faraday constant, R is the ideal gas constant, T is the temperature,  is the electrical 
potential. The multispecies diffusive fl uxes including the electrochemical migration can be 
important in dilute solutions (Van Cappellen and Gaillard 1996; Li et al. 2007; Lichtner and 
Kang 2007; Liu et al. 2011; Molins et al. 2012; Zhang and Klapper 2014). In this article, 
we will briefl y introduce the lattice Poisson–Boltzmann method to account for the electro-
osmotic fl ows as a special case. For the sake of simplicity, it is assumed that all ion species 
have the same diffusion coeffi cient to ensure local charge balance (Lichtner 1985) and avoid 
complicated charge-separation and charge-induced electrostatic interaction. The pore-scale 
advection–diffusion–reaction equation is 
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
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where NR is the number of possible homogenous and heterogeneous reactions, vir is the 
stoichiometric coeffi cient, and Rr is the reaction rate. 
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To solve for a chemical system with many species, it is practically accepted to assume 
local partial equilibrium where both local equilibrium and kinetic reactions take place 
simultaneously. In this article, the homogeneous reactions are assumed to be in instantaneous 
equilibrium and all reactions at the heterogeneous interfaces are kinetically controlled. This 
approach is comprehensively discussed by Lichtner (1985, 1996) and the reactive transport 
equations in terms of the total concentrations (j) are given by 
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where Nm is the number of kinetically controlled reactions, vjk is the stoichiometric coeffi cient 
in the reaction k with primary species j, Rk is the reaction rate for the k-th mineral reaction 
at the mineral–fl uid interface, Rbio is the reaction rate due to biologically mediated reactions 
(biomass growth and biological production), Cj is the concentration of primary species j, Neq is 
the number of secondary species (subject to equilibrium reaction), and Ci is the concentration 
of secondary species i. The Ci is given through the mass action law as functions of the primary 
species concentrations:
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where i is the activity coeffi cient and Ki is the equilibrium constant.

Mineral precipitation and dissolution 

The rate laws for mineral precipitation and dissolution at the pore scale can be described 
by transition state theory (TST) (Lasaga 1981) where the rate law is a function of the saturation 
state of the solution. The reaction rate can be expressed for all minerals (Lasaga 1998) with a 
general form by

eq

1 ,

n
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Q
R a k

K

 
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 
(10)

where am is the specifi c surface area of the m-th mineral, km is the reaction rate constant, 
Qs is the ion activity product, Keq is the equilibrium constant of the reaction, and n is the 
order of the reaction. The limitations of the applicability of the TST rate expressions were 
recently reviewed by Steefel et al. (2013) to address the issues on the reversibility implied in 
the TST formulation, the bulk TST approaches compared to atomistic reaction processes, the 
lack of time-dependent mineral surface reactivity, and the limitations on transport-controlled 
reactions. Nonetheless, recent pore-scale modeling results (Molins et al. 2012; Yoon et al. 
2012; Hiorth et al. 2013) show that the TST approaches in a form of Equation (10) can match 
experimental results relatively well if a fi ne spatial resolution (at the order of micron scale) is 
used together with well-characterized reaction surfaces. 

As stated earlier, all mineral precipitation and dissolution will take place at the mineral–
fl uid interface. In addition, the rate of the change of the interface due to Equation (10) is much 
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slower than the scale of fl uid velocities, and a quasi-steady approximation of the fl uid fl ow can 
be used. Assuming no-slip boundary condition at the mineral surface, heterogeneous reactions 
at mineral interfaces can be represented through the internal boundary conditions (Kang et 
al. 2002; Li et al. 2008; Meakin and Tartakovsky 2009). The boundary condition for the total 
concentration is given by (Kang et al. 2006)

1 eq
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m

n
N

j s
jm m

m

Q
D v k

K

 
      
n

(11)

where n is the direction normal to the interface pointing toward the fl uid phase. Recently, 
Huber et al. (2014) demonstrated the phase fi eld approach is equivalent to the internal 
boundary conditions in the framework of LB formulations. It is noted that when the 
internal boundary conditions (i.e., reaction models) are solved with the advection–diffusion 
equation (Eqn. 7), the confi guration of the surface area and update of the surface are the key to 
control the overall reaction rate and the feedback between porosity change and fl ow fi eld. Two 
key dimensionless numbers including the Péclet number (Pe / )ml D u  and the Damköhler 
number (Da / )m mk l D  are often used to characterize the transport and reaction processes. 
Since the solid phase is assumed immobile, the volume change of the mineral phase is given by

,m
m m m

V
V a R

t





(12)

where Vm, mV , and ma  are the volumetric fraction, molar volume, and specifi c surface area of 
the m-th mineral, respectively. Solute diffusion in the solid phase is neglected. The volume is 
updated at each time step explicitly according to the equation

( d ) ( ) d ,m m m m mV t t V t V a R t    (13)

where dt is the time interval for the mineral update. 

Biofi lm dynamics

A great deal of understanding biofi lm dynamics has been gained from study of water and 
wastewater treatment processes where the bacteria are attached to a solid media forming an 
immobile biofi lm. Modeling biofi lms in engineered reactors is well described by Rittmann and 
McCarty (2001) and IWA Task Group (2006). Following these works, the biofi lm in porous 
media is typically assumed to be impermeable to water fl ow, and therefore the total pore space 
can be partitioned into a fl uid and biofi lm phase. Dissolved substrates and solutes are allowed 
to diffuse within the biofi lms where the diffusion coeffi cient within the biofi lm phase (e.g., 
Eqn. 6 or 7) is generally taken as roughly 80% of its value in water (Rittmann and McCarty 
2001). In addition, several works have allowed the biofi lm to be slightly permeable to water 
fl ow to improve model predictions (Thullner and Baveye 2008; Pintelon et al. 2012; Deng et 
al. 2013). Assuming all the bacteria are attached to the solid as a biofi lm, a local mass balance 
equation applies, similar to the case of mineral precipitation and dissolution

growth decay

d
,

d

M
r r

t
  (14)

where M represents the mass of bacteria per unit volume of fl uid and rgrowth and rdecay represent 
the bacteria growth and decay rates, respectively. 
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The Monod equation is widely used to link bacteria growth to consumption of dissolved 
substrates

growth util ,r MY r (15)

util max ,
c

C
r k

K C



(16)

where Y is the biomass yield coeffi cient (mass of bacteria produced per mass of substrate 
consumed), C is the dissolved substrate concentration (mass per volume fl uid), kmax is the 
maximum specifi c utilization rate (mass of substrate per mass of bacteria-time), and Kc is the 
half-maximum-rate concentration. For the sake of simplicity it is assumed that there is a single 
limiting substrate for bacteria growth; however, several studies have used dual Monod kinetics 
to investigate situations where two substrates (e.g. an electron donor and acceptor) are limiting 
(Knutson et al. 2005; Tang et al. 2013). 

The growth rate is directly coupled to substrate consumption, so formally rgrowth = -Rbio 
in 

Equation (7). As biomass grows, it can spread out and occupy an increasing volume of the pore 
space. This biofi lm growth is very similar to growth of solid phase due to net precipitation, 
which will be discussed in the LB section. Growing bacteria requires energy for basic cell 
maintenance, resulting in a continuous biomass decay, termed endogenous decay (Rittmann 
and McCarty 2001). It is typically accepted to use a simple fi rst-order rate law rdecay = kd  M 
where kd is a decay coeffi cient (1/time). In some multispecies models, a portion of the biomass 
that decays accumulates into a pool of inert biomass. There are other mechanisms for biofi lm 
loss that result from discrete events over time, including cell lysis and detachment. These 
will be briefl y discussed later. Typically, two different strategies have been used for biomass 
spreading, namely continuous and discrete models (Fig. 2). The fi rst approach treats biomass 
as a separate continuum phase (the fl uid being the other phase); the bacteria grow in response 
to substrate in the fl uid phase and this growth leads to an expansion into the fl uid domain. In 
discrete models, the biomass is represented as discrete quantities, either assigned to numerical 
grid blocks or to particles. In the discrete approach, bacteria consume substrate and grow, 
but the spreading process uses rules to spread the biofi lm. Attachment and these spreading 
approaches will be described in the next section.

Figure 2. Biofi lm growth and spreading models assume that the biofi lm is either represented as a con-
tinuum (A) or as discrete quantities (B and C) [Used by permission of IWA Publishing, modifi ed from IWA 
Task Group on Biofi lm Modeling (2006), Fig. 3.12, p. 106].
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LATTICE BOLTZMANN METHODS FOR FLOW
AND REACTIVE TRANSPORT

LBM for fl uid dynamics

In LBM, a fl uid is treated as mesoscale particles moving in a lattice domain (space 
discretization) with discrete lattice velocities (momentum discretization) at discrete time steps 
(time discretization). The fl uid variables (such as density and velocity) can be obtained through 
the moments (summation) of distribution functions over all discrete velocities. Typically the 
two-dimensional nine-velocity (D2Q9) and the three-dimensional nineteen-velocity (D3Q19) 
models for the 2-D and 3-D space, respectively, are employed (Fig. 3). The most popular LB 
fl uid fl ow model is the Bhatnagar–Gross–Krook (BGK) or single relaxation time (SRT) model 
(Bhatnagar et al. 1954). However, a viscosity-dependent permeability is usually obtained 
when adopting SRT-LBM for simulating fl uid fl ow in porous media (Pan et al. 2006). In order 
to overcome such defect, the multi-relaxation-time (MRT) model has been proposed for fl ow 
simulation (d’Humières et al. 2002; Pan et al. 2006). For a general purpose, we choose a 3-D 
multiple-relaxation time (MRT)-LBM in this article, because the MRT-LBM model has been 
shown to be superior to the SRT method (Pan et al. 2006; Hilpert 2011).

 Multiple Relaxation Time LBM. The MRT-LBM model transforms the distribution 
functions in the velocity space of the SRT-LBM model to the moment space by adopting a 
transformation matrix. In the SRT-LBM model, the evolution equation for the distribution 
functions (i.e., LBE) can be written as

eq( , ) ( , ) [ ( , ) ( , )] 0 ~ ,i i i i if t t t f t f t f t i N       x e x S x x (17)

where fi(x,t) is the i-th density distribution function at the lattice site x and time t. S is the 
relaxation matrix. For the D3Q19 model with N = 18, the discrete lattice velocity ei is given by

0 0

( 1,0,0), (0, 1,0), (0, 1,0) 1 6

( 1, 1,0), (0, 1, 1), ( 1,0, 1) 7 18.
i

i

i

i


    
       

e 


(18)

Figure 3. Schematics of the D2Q9 (left) and D3Q19 (right) models. The lattice velocities are indicated by 
arrows starting from the square/cube center. Note there is a zero lattice velocity e0 = 0 in both the models.
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feq is the i-th equilibrium distribution function and is a function of local density and velocity

2
eq

2 4 2

( )
1

( ) 2( ) 2( )
i i

i i
s s s

f w
c c c

   
     

 

e u e u u u (19)

with the weight coeffi cient wi as wi = 1/3 for i = 0; wi = 1/18 for i = 1, 2,…, 6; wi = 1/36, for 
i  = 7, 8,…,18. 1 / 3sc   is the speed of sound. By multiplying both sides of Equation (17) 
with a transformation matrix Q, an (N + 1) × (N + 1) matrix, the evolution equation in the 
moment space can be expressed as 

 eq( , ) ( , ) [ ( , ) ( , )]c t t t t t t      m x m x S m x m x (20)

eq eq 1f,   f ,   ,      m Q m Q S Q S Q (21)

where m and meq are the velocity moments and equilibrium velocity moments, respectively. 
Q-1 is the inverse matrix of Q, both of which are given in d’Humières et al. (2002). The 
transformation matrix Q is constructed based on the principle that the relaxation matrix ,S
an (N + 1) × (N + 1) matrix, in moment space can be reduced to the diagonal matrix, namely


0 1 17 18diag(s ,s ,...,s ,s )S (22)

There is a large degree of freedom in choosing the relaxation parameters. According to 
Pan et al. (2006), one optimal set of relaxation parameters is given as: 
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where  is related to the fl uid viscosity by 

2
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which is called the two-relaxation-time (TRT) model (Ginzburg and d’Humières 2003). 

The detailed equilibrium velocity moments meq can be found in Pan et al. (2006) and 
density and momentum (j) are determined by 

,    i i i
i i

f f   j e (25)

The expression in Pan et al. (2006) includes the mean density of the fl uid (0), which is 
employed to reduce the compressibility effects of the model. Equations (20–25) can recover 
the Navier–Stokes equations using Chapman–Enskog multiscale expansion under the low 
Mach number limitation. In contrast to the SRT model, the collision step in the MRT model 
is implemented in the moment space, while the streaming step is carried out in the velocity 
space.

 Boundary conditions. As described earlier, complex geometries (boundaries) of porous 
media can be easily treated. A no-slip boundary condition at the solid surface can be realized 
through the “bounce-back” condition, which mimics the phenomenon that a particle refl ects 
its momentum when colliding with a solid surface. It has been recognized that the combination 
of the SRT-LBM model with a standard bounce-back (SBB) scheme for fl uid–solid boundaries 
may lead to viscosity-dependent permeability (Pan et al. 2006), causing errors in boundary 
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locations. Recently, several schemes have been developed to more accurately represent such 
boundaries using spatial interpolations, including the linearly interpolated bounce-back (LIBB) 
scheme, the quadratically interpolated bounce-back (QIBB) scheme, and the multirefl ection 
(MR) scheme (Bouzidi et al. 2001; Ginzburg and d’Humières 2003; Yu et al. 2003). These 
methods have been incorporated separately into SRT-LBM and MRT-LBM, and a systematic 
quantitative comparison of the numerical accuracy and convergence rate of these methods for 
complex porous medium systems has been reported by Pan et al. (2006). In their work, the 
MRT models signifi cantly reduce the viscosity dependence of permeability in porous medium 
simulations. In the MRT models, the location where the exact fl ow boundary conditions are 
satisfi ed can be essentially viscosity-independent by specifying an appropriately constructed 
collision operator, but it is impossible to achieve this with an SRT model. 

LBM for multi-component reactive transport

 Advection–diffusion reaction for a single-component system. The LB models for 
chemically reacting fl uid fl ows were fi rst introduced by Kingdon and Schofi eld (1992) and 
Dawson et al. (1993). In their models, the LB equations for transport have a similar form to the 
fl ow equation, with the addition of a source/sink term representing chemical reactions. The 
chemical reactions used in Kingdon and Schofi eld (1992) represent the Selkov model. In a 
more general case, homogeneous chemical reactions taking place in an aqueous fl uid can be 
written as a mass action law as in Equation (9). If the concentrations of the aqueous species are 
assumed to be suffi ciently low so that their effect on the density and velocity of the solution is 
negligible, then the reactive transport of solute species can be described using another set of 
distribution functions, kg , which satisfi es a similar evolution equation as fi.
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where Ir is the reaction rate of the r-th reaction, Ck is the solute concentration of the k-th 
species, and k is the relaxation time related to the diffusivity.

It is noted that the advection–diffusion equation obeyed by the concentration is linear 
in velocity u. This indicates that the equilibrium distributions for scalar transport need only 
to be linear in u; and thus lattices with fewer vectors are suffi cient for scalar transport. Thus, 
a reduced D2Q5 lattice model in which the discrete velocities (i = 5, 6, 7, 8) in the D2Q9 
model (Fig. 3) are not considered, is often used for solute transport. The D2Q5 model is 
combined with an equilibrium distribution function that is linear in u (Sullivan et al. 2005)
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where the concentration Ck and a constant Jk are given by 
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The rest fraction J0 can be selected from 0 to 1. In the literature, different forms of 
equilibrium distribution functions are adopted. The equilibrium distribution function given 
by Equation (29) is a general formula, which becomes the one used in Huber et al. (2008) if 
J0 = 1/3 and Kang et al. (2007) if J0 = 0. The accuracy and effi ciency of the reduced D2Q5 model 
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has been confi rmed in the literature (Kang et al. 2007; Huber et al. 2008; Chen et al. 2012, 
2013a, 2014a). Equation (29) covers a wide range of diffusivity by adjusting J0, which is a 
prominent advantage of such an equilibrium distribution (Sullivan et al. 2005; Chen et al. 
2013b). Using the Chapman–Enskog expansion technique, one can prove that Equation (26) 
recovers the pore-scale advection–diffusion–reaction equation for an incompressible fl ow fi eld 
as in Equation (6). The physical diffusion coeffi cient using the LB parameters is given by
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(30)

Therefore, one can solve the reactive transport problem by solving Equation (26) for each 
species, assuming all reaction rate constants are known. 

LBM for reactive species has been used for various problems. Dawson et al. (1993) 
simulated pure diffusion, homogeneous chemical reactions and pattern formation due to 
Turing instability. Their LB simulation results agreed well with theoretical predictions and 
captured the basic physics as predicted by the macroscopic reaction–diffusion equations. 
Weimar and Boon (1996) simulated an athermal fl ow that advects reactant species. They 
considered a nonlinear reactive system described by the Brusselator model. Yan and Yuan 
(2001) simulated the Belousov–Zhabotinskii reaction and showed that the LBM could capture 
the well-known chemical clock of the diffusion–reaction system. Recently it has also been 
used to simulate bacterial chemotaxis (Hilpert 2005) and bacterial growth in porous media 
(Zhang et al. 2010b).

 Advection–diffusion reaction for multi-component system. As described earlier, solving 
Equation (26) for each species corresponding to Equation (6) may be very computationally 
expensive. For multi-component systems, Kang et al. (2006) have derived the following 
LB equation for the total primary species concentrations, j  (Eqn. 7) with reactions written 
in canonical form
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where 1,..., Cj N  and CN  is the number of primary species, jG  is its distribution function 
along the  direction, eq

jG  is the corresponding equilibrium distribution function and aq  
is the dimensionless relaxation time for all the aqueous species. With the homogeneous 
reactions in the canonical form, formulating a LB equation for total concentration j
and replacing the rates of these reactions with mass action equations, the number of 
unknowns and evolution equations is reduced from NC + NR to NC. The reduction can be 
signifi cant for a system with many aqueous species. For example, the chemical system of 
Na+–Ca2+–Mg2+–H+–SO4

2-–Cl-–CO2 with the reaction of calcite to form dolomite and gypsum 
has (NC + NR) equal to 23, but NC equal to only 7 (Kang et al. 2010). Here only species-
independent diffusion is considered, guaranteeing conservation of charge in the aqueous phase 
as described earlier. Different diffusion coeffi cients can be obtained by varying x  or t  in 
Equation (30). More information on LBM simulation of electrochemical systems that includes 
species-dependent diffusion can be found in He and Li (2000) and will be briefl y introduced 
later. Equation (31) can recover the pore-scale advection–diffusion equation without reaction 
terms in Equation (7). 

 LBM for chemical reactions at the fl uid–solid interfaces. Early work on chemical 
reactions at solid surfaces was based on LGA. Wells et al. (1991) pioneered an LGA model that 
couples solute transport with chemical reactions at mineral surfaces and in pore networks. In 
their model, chemical reactions considered at solid surfaces included precipitation/dissolution, 
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sorption and catalytic reaction. Dissolution and precipitation reactions were simulated by 
allowing wall nodes to serve as sources or sinks for mass of a dissolved component. Whenever 
a particle collides with a wall, a unit of mass may be exchanged, thus increasing or decreasing 
the local concentration in solution depending upon the saturation state of the fl uid. Later, 
Sullivan et al. (2005, 2006) simulated 2-D and 3-D packed bed reactors using a LBM. They 
accounted for the local fl uid velocity by including reaction via concentration changes in the 
equilibrium distribution. Recently, Huber et al. (2014) treated heterogeneous reactions at the 
fl uid–mineral interfaces which are explicitly part of the computational domain. So the internal 
fl uid–solid boundaries are treated in a similar way as any fl uid site in the computational 
domain, and the algorithm to solve for surface reactions is independent of the surface shape 
and orientation of the grains.

Typically heterogeneous reactions in the LBM are treated through boundary conditions. 
Kelemen et al. (1995) extended the LBM with a dissolution boundary condition such that the 
fl uid particle colliding with the wall has a probability of detaching a solid particle. Verhaeghe 
et al. (2006) designed boundary conditions to impose a concentration or a fl ux on a solid 
interface for use in multicomponent LBMs. Other approaches for concentration boundary 
treatment focused on deriving the unknown distribution functions at the fl uid–solid interface 
based on local conditions for different boundary condition types. To discuss the concentration 
boundary conditions, a schematic illustration of the fl uid–solid interface is presented in 
Figure 4. Following Zhang et al. (2012), the boundary condition at this interface is

1 2 3,
C

b b C b


 
n

(32)

which is a general formula that can describe all the three types of boundary conditions: the 
Dirichlet boundary condition, with b1 = 0 and b2 ≠ 0, the Neumann boundary condition, with 
b2  = 0 and b1 ≠ 0, and a mixed boundary condition, with b1 ≠ 0 and b2 ≠ 0. 

Figure 4. A schematic illustration of a fl uid–solid interface node in the D2Q5 lattice model. F and S repre-
sent a fl uid and solid node, respectively. R represents the reactive interface node.
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Kang et al. (2007) proposed a new expression of the concentration distribution function in 
terms of the corresponding concentration and its gradient

.i ig C D C   e u (33)

After each streaming step in Figure 4, g2 is unknown and g4 is known; and g1 and g3 do not 
affect the fl uid domain and hence are not needed to calculate their values. In this case, the 
reactive wall is static. They pointed out that since g2 enters the domain and g4 leaves the 
domain, the following equation based on Equation (33) is obtained at the reactive node R
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where c = dx/dt and C can be the total concentration for the multi-component system. The fact 
that the non-equilibrium portion of the distribution functions in opposite directions takes the 
opposite sign for a static wall derives another equation

eq neq eq neq eq eq
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Finally, the unknown distribution g2 can be obtained by combining Equations (34–35).

Instead of using Equation (33), Zhang et al. (2012) proposed to directly solve Equation (32) 
to obtain the concentration at the boundary using the following difference scheme
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where CR and CF are the concentrations at interface node R and adjacent fl uid node F, 
respectively, and Δx is the distance between nodes F and R. In Equation (36) CR is the only 
unknown and thus can be directly solved. The unknown g2 can be solved with Equation (35). 
Following Zhang et al. (2012), Chen et al. (2013b) improved the accuracy of boundary 
treatment by adjusting the bounce-back particle distribution functions according to the velocity 
and concentration values at the midpoint of a boundary lattice link.

In a recent study, Chen et al. (2013b) proposed to use Equation (33) to solve the unknown 
distribution function after CR is obtained from Equation (36). For the boundary node shown in 
Figure 4, the new boundary condition can be written as
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Equation (37a) is used to solve CR, followed by using Equation (37b) to solve g2. This 
boundary condition treatment can handle moving boundary conditions. The boundary condition 
described by Equation (37) can be uniformly used to treat both a reactive fl uid–solid boundary 
and a zero-fl ux fl uid–fl uid boundary. For the static fl uid–solid boundary, a precipitation or 
dissolution reaction leads to the following reduced form of Equation (37)
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For the moving fl uid–fl uid boundary, there is no reaction, and the concentration gradient 
of solute is zero. Thus Equation (37) reduces to
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Update of solid–pore geometry

To model accurately reactive transport involving signifi cant mass transfer between solids 
and fl uids due to dissolution and/or precipitation, it is necessary to account for the time evolution 
of the solid phase (pore geometry). For tracking the fl uid–solid interfaces, the phase fi eld (PF) 
method (Chen 2002) and the cellular automaton (CA) methods (Sun et al. 2009) are widely 
used. Other methods such as Volume of Fluid (VOF) and Level Set (LS) commonly used for 
multi-fl uid phase fl ow, can be also adopted for this purpose (Li et al. 2008). Verberg and Ladd 
(2000, 2002) designed an algorithm for simulating chemical erosion in rough fractures using 
an optimized LB scheme. A continuous bounce-back scheme allows for the boundary to be 
located anywhere between two grid nodes. The new solid structure is determined based on the 
local fl ux of tracer particles across the solid surface, assuming an instantaneous reaction, so 
dissolution is diffusion-controlled. In Verhaeghe et al. (2006), the amount of species injected 
in the system was calculated from the difference between populations leaving and entering the 
system. Li et al. (2008) studied a similar problem using LS to track the fl uid–solid interfaces. 
In addition, Luo et al. (2012) implemented a model using a diffuse interface method to track 
the fl uid–solid interface. Most recently, Huber et al. (2014) combined LBM and PF method for 
dissolution–precipitation processes involving single or multiple species. 

To track the moving fl uid–solid interfaces caused by dissolution and precipitation, Kang 
et al. (2003, 2006) developed the volume of pixel (VOP) method, a type of CA method. Each 
fl uid–solid interface node represents a control volume (a control area in the 2-D case) with a 
size of 1 × 1 × 1 (in lattice units) and is located at the center of this volume. As in Figure 4, 
the node R is the center of the control volume surrounded by dashed lines. The control volume 
is assigned with a certain amount of mineral mass (volume) that changes with time due to 
chemical reaction (Eqn. 12); then the volume is updated using Equation (13). In these studies, 
both a time interval and specifi c surface area (am) equal unity in lattice units. When Vm reaches 
certain threshold values, the pore geometry needs to be updated. Here we will briefl y describe 
the volume of pixel method developed by Kang and coworkers.

 Single mineral VOP method. In this method, the grid size is assumed to be small enough 
to represent each node by one mineral at one time and the effect of both dissolution and 
precipitation is recorded at that node through Equation (13). For dissolution, the solid node 
associated with Vm can be simply removed (i.e., changed to a pore node) when Vm reaches 
zero (Kang et al. 2002, 2014; Chen et al. 2014a). For precipitation, when Vm reaches a certain 
threshold value, a nearby neighboring fl uid node (child node) can be chosen to become a solid 
node. There may be multiple such nodes, and different ways of choosing the child node may 
lead to different crystal growth patterns. Therefore, the single-mineral VOP model has an extra 
degree of freedom which allows for incorporating different crystal growth mechanisms such 
as a random-growth method for single species (Kang et al. 2003, 2004) and multi-component 
systems (Kang et al. 2006). In this random-growth method, the growth has no preference in 
any particular direction and the method has been shown to be lattice-effect free. Figure 5 shows 
crystal growth patterns from a supersaturated solution of a single species using the random-
growth method. It is clear that crystal shape in this case (d) is fairly round. The VOP has many 
advantages: a clear physical concept, simple and stable arithmetic, easy implementation of 
various surface reactions, and fl exible coupling with different nucleation and crystal growth 
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mechanisms. The method has been used successfully to predict many moving solid–fl uid 
interface phenomena, such as crystal growth (Kang et al. 2004), rock dissolution due to acid 
injection (Kang et al. 2002, 2003), Liesegang bands or rings (Chen et al. 2012), and dissolution 
and precipitation involved in CO2 sequestration (Yoon et al. 2012). 

Growth in preferred directions can be achieved by exploiting the extra degree of freedom 
in the VOP model and incorporating corresponding physics in the growth rules. For examples, 
polygonal and dendritic crystals with symmetry have been produced by aligning the direction 
of growth to that of the maximum concentration gradient and different morphologies have 
also been obtained by varying the probability of adding a solid node in that direction (Lu et al. 
2009). Another growth mechanism is epitaxial growth in which the precipitates quickly spread 
and cover the surface of the primary mineral, thus only a small amount of precipitates can 
completely stop the dissolution (Prieto et al. 2003). 

 Multiple mineral VOP method. In reality, changes of solid morphology can involve 
scales much smaller than the lattice or pore size used in the simulations. Therefore, it is 
reasonable to assume that each node can be represented by multiple minerals with the initial 
total volume fraction equal to unity. In this case, the volume fraction of each mineral is still 
updated by Equation (13) and dissolution recorded in the solid node. Mass accumulation due 
to precipitation, however, is recorded at the neighboring pore nodes. As seen in Figure 4, when

  0,mV R  (40)

Figure 5. Crystal structures developed at different Da numbers and at solute saturation (1.2): (a) Da = 600; 
(b) Da = 150; (c) Da = 48; (d) Da = 2. m represents the number of solid particles (crystal mass). [Used 
by permission of John Wiley and Sons, from Kang Q, Zhang D, Lichtner PC, Tsimpanogiannis IN (2004) 
Lattice Boltzmann model for crystal growth from supersaturated solution. Geophysical Research Letters, 
Vol. 31, Fig. 2, p. L21604-3]
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the node R is changed to a fl uid node. Alternately, when

  0,mV F V (41)

the node F becomes a solid node composed of multiple minerals. In contrast to previous 
methods (Kang et al. 2003, 2004, 2006) for updating pore geometry, the multiple-mineral 
VOP method can account for coexistence of multiple minerals at the same node and the 
growth of minerals is deterministic rather than random. Figure 6 shows crystal structures at 
Da = 600 with the single-mineral VOP (random-growth) method (left) and multiple-mineral 
VOP approach (right) to update the solid phase (Kang and Lichtner 2013). At this high 
Da number, the process is diffusion-controlled. As a result, the crystal structure is not compact. 
However, while the crystal on the left is an open cluster-type structure, consistent with that of 
the multi-particle, diffusion-limited aggregation in the simulation of solidifi cation structures 
of alloy melt, the crystal structure on the right is highly symmetric and regular. The multiple-
mineral VOP approach was also used in the pore-scale study of reactive transport involved 
in CO2 sequestration (Kang et al. 2010). Clearly, when combined with appropriate methods 
for the underlying physical properties and processes to update the solid phase, the LBM can 
simulate a variety of reactive fl ow problems. 

LBM for biofi lm dynamics

The system of equations described in Equations (3), (6) and (14–16) includes three 
dynamic processes, which occur at very different time scales: biofi lm development on the order 
of hours or days; transport and reaction of chemical species on the order of minutes; and fl uid 
fl ow on the order of seconds (Picioreanu et al. 2000; Pintelon et al. 2009). Therefore, when the 
fl ow or substrate concentration suddenly changes, the biofi lm can be assumed unchanged (i.e., 
in a “frozen” state). Based on this assumption, the three processes are commonly decoupled 
and solved sequentially. As described earlier, the biofi lm consists of multiple active microbial 
species, inert biomass, and EPSs. Biofi lm spreading is typically computed using a continuum 
or discrete model as shown in Figure 2. Since a majority of pore-scale biofi lm models in 
literature adopt a discrete representation of the biomass, this approach will be explained in 

Figure 6. Crystal structures and solute concentration obtained using single-mineral VOP approach (ran-
dom growth) (left) and multiple-mineral VOP approach (right). [Used by permission of Hindawi, from 
Kang QJ, Lichtner PC (2013) A lattice Boltzmann method for coupled fl uid fl ow, solute transport, and 
chemical reaction. In: Progress in Computational Physics. Ehrhardt M (ed) Bentham Science Publishers, 
Vol. 3, Fig. 8, p. 196]
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more detail below. For continuous model of biofi lm spreading, the reader may refer to key 
literature for various variants (Alpkvist and Klapper 2007; Wang and Zhang 2010; Lindley 
et al. 2012; Zhang and Klapper 2014). The LBM earlier described for hydrodynamics and 
reactive transport can be applied for biogeochemical reactive transport. In fact, the LBM for 
advection-diffusion-reaction (Eqns. 27–30) developed by Sullivan et al. (2005) for packed 
bed reactors was directly applied for biofi lm dynamics (von der Schulenburg et al. 2009). 
In Sullivan et al. (2005), the diffusion coeffi cient within intra-particle space was adjusted by 
changing the relaxation time (k) in Equation (30), which can be adapted for diffusivity within 
biofi lm. Knutson et al. (2005) simulated biofi lm growth in porous media to account for biofi lm 
morphology observed in microfl uidic experiments using the LB-FVM with a CA algorithm for 
biofi lm dynamics. von der Schulenburg et al. (2009) presented the fi rst numerical 3-D pore-scale 
model of biofi lm growth in porous media, based on an LB simulation platform complemented 
with an individual-based biofi lm model (IBM), where the biofi lm is represented as a collection 
of non-overlapping hard spheres. Following this work, Pintelon et al. (2009) added a biomass 
detachment technique using a fast-marching level-set method that modeled the propagation 
of the biofi lm liquid interface with a speed proportional to the adjacent velocity shear fi eld. 

 Attachment. The fi rst stage in biofi lm development is its attachment to the solid surface. 
This is a complex process that involves deposition of suspended bacteria onto the surface 
followed by physiologic changes (Breyers 1988). The deposition process has been quantifi ed 
using colloid fi ltration theory (e.g., Harvey and Garabedian 1991; see other citations in 
Rittmann 1993), but most of these studies address migration of bacteria in porous media. For 
pore-scale biofi lm dynamics, some initial spatial distribution of attached biomass is typically 
assumed. For example, in the approach of Knutson et al. (2005) and Tang et al. (2013), the 
initial mass of microbes was randomly distributed among grid cells along the liquid-solid 
interface, a distribution which simplifi ed the inoculation of biomass in the microfl uidic pore 
network. A similar approach to inoculation is used by von der Schulenburg et al. (2009), 
whereas Bottero et al. (2013) modeled a fi xed rate of attachment by converting grid cells from 
fl uid to biomass at the liquid–solid interface at each time step; they used a random spatial 
pattern, but screened out solid boundaries on particles in stagnant zones.

 Discrete model for biofi lm growth and spreading. Following the pioneering work by 
Picioreanu et al. (1998), a popular approach to a discrete representation of the biomass is 
to assign biomass to fi xed grid cells (normally squares in 2-D and cubes in 3-D). A mass 
balance equation applies to each biomass cell (Eqn. 14). The biomass in each cell grows due to 
substrate utilization, and when the total biomass in the cell exceeds a critical value, the excess 
biomass is spread (transported) to adjacent grid cells according to some rules such as CA as 
described for mineral precipitation. Many different CA rules for biomass spreading have been 
used in the literature; the three most common are briefl y discussed here (Tang et al. 2013). In 
the fi rst rule (e.g., Kreft et al. 2001), when the biomass concentration in a grid is higher than the 
critical value, the biomass in the source grid divides in half, similar to bacterial reproduction. 
One half stays in the grid, the other half displaces a randomly chosen nearest-neighbor, which 
in turn displaces another randomly chosen neighbor, and so on until a free liquid grid (i.e., 
a destination grid on the biofi lm surface) is available. In the second rule (e.g., Noguera et 
al. 1999), the excess biomass (i.e., biomass that is greater than the maximum) is distributed 
directly to one of the nearest free liquid grids (i.e., destination grid) non-adjacent to the source 
grid cell. In the third rule (e.g., Tang and Valocchi 2013), excess biomass spreads by pushing 
a line of grid cells that are on the shortest path from the source grid cell to the destination 
grid cell, causing changes to the fractions of different biomass species in the grid cells on 
the path. The three different rules yield similar simulated results for a single species biofi lm, 
but different results for multi-species biofi lm (Tang and Valocchi 2013). These rules can be 
modifi ed in many ways; for example, instead of distributing excess biomass to a randomly 
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chosen nearest neighbor, the destination grid having the highest substrate concentration can be 
selected. Knutson et al. (2005) and Tang and Valocchi (2013) exclude destination cells where 
fl uid velocity or fl uid shear stress is above a certain threshold, and found that this exclusion 
was needed to qualitatively match biofi lm spreading observed in microfl uidic experiments 
(Nambi et al. 2003; Zhang et al. 2010b). 

Even with simple CA rules (e.g., Picioreanu et al. 1998), the interplay between mass 
transfer and biofi lm growth can lead to a diverse biofi lm patterns as shown in Figure 7. Initially, 
20% of the surface has a randomly spaced inoculum; a limiting substrate diffuses from the 
upper boundary to the lower surface resulting in biofi lm growth. The irregular “mushroom 
shaped” colonies form when the rate of diffusion is small relative to the rate of degradation 
at 50 days (Fig. 7). In the other discrete model (i.e., IBM), however, spherical particles grow 
by consuming substrate, resulting in an increased radius. When the particle mass exceeds a 
threshold, it divides into mother–daughter particles that spread out; a “shoving” algorithm is 
used to eliminate overlapping radii of particles (see Kreft et al. 2001 and Picioreanu et al. 2004 
for details). Since the IBM is not constrained to grid coordinates, biofi lm morphologies tend to 
be more rounded than those resulting from the CA approach. The latter also leads to biofi lms 
that are artifi cially constrained to the underlying grid. The IBM is fl exible because it can 
include different bacteria species along with inert biomass and other components (Picioreanu 
et al. 2004). 

 Biofi lm loss processes. In addition to the endogenous decay process described earlier, 
there are several other mechanisms for loss of mass from biofi lms, including lysis, protozoan 
grazing, and detachment. Detachment can include several mechanisms, including erosion 
of small pieces from the outer surface of the biofi lm and sloughing of larger sections (IWA 
Task Group 2006). A recent trend is to use a relatively rigorous bio-mechanical model of 
biofi lms to study detachment and related processes (Dupin et al. 2001; Klapper and Dockery 
2010; Lindley et al. 2012). Several studies adopting a discrete biofi lm model use mechanical 
principles to simulate detachment in porous media systems. Picioreneau and co-workers treat 
the biofi lm as an elastic solid and use classical mechanical equilibrium and compatibility 
conditions to determine “failure,” i.e., detachment (e.g., Picioreneau et al. 2001). This 
approach requires input of basic biofi lm mechanical properties such as the tensile strength and 
elastic modulus, and is relatively straightforward to implement for 2-D CA biofi lm models. 
von der Schulenburg et al. (2009) neglected to include detachment due to relatively lower 
shear rates, but Pintelon et al. (2009) used the IBM for biofi lm spreading and used a fast-
marching level-set (FMLS) method to simulate biomass detachment. Bottero et al. (2013) used 
a similar detachment model based on level sets, but allowed the cohesive strength of biofi lm to 
decrease as biomass decays. It is one of the few studies that explicitly considers the cell lysis 

Figure 7. Developing biofi lm using the CA modeling approach on a fl at surface due to diffusion of a single 
limiting substrate from the top boundary. The system is transport limited [Used by permission of John 
Wiley and Sons, from Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling 
of biofi lm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and 
Bioengineering, Vol. 58, Fig. 6, p. 111].
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mechanism; biofi lm lysis occurs when the fraction of inert biomass in a grid cell exceeds a 
certain value. In all models, including Bottero et al. (2013), all detached biomass is assumed 
to be instantly removed from the system, an assumption which may not be accurate in porous 
media. Biofi lm detachment can also be considered in pore-network models (e.g., Stewart and 
Kim 2004; Thullner and Baveye 2008), but these models are not covered in this article.

LB-BASED ALGORITHMS FOR OTHER APPLICATIONS

Multiphase reactive transport

There has been little work on numerical simulation of chemical processes coupled with 
multiphase fl ow at the pore scale (Meakin and Tartakovsky 2009; Parmigiani et al. 2011; Chen 
et al. 2013b). Although models for both single-phase multi-component reactive transport and 
multiphase fl ow have been developed, integrating the two is challenging because new physical 
processes absent in their respective individual system will arise due to the coupling between 
them. For example, the displacement patterns that range from planar fronts to capillary and 
viscous fi ngers will determine the fl uid–fl uid interfacial area. This interfacial area will affect 
chemical reactions at the interface and will change the chemical heterogeneity of the system. 
This chemical heterogeneity, together with the physical heterogeneity of the porous media, in 
turn, will infl uence the intrinsically complex contact line/contact angle dynamics, and hence 
infl uence the displacement patterns. 

Recently, several works attempted to investigate chemical processes coupled with 
multiphase fl ow using the LBM. Parmigiani et al. (2011) studied a non-wetting fl uid fl owing 
into a wetting fl uid coupled with dynamic evolution of the solid geometries due to chemical 
reactions. Although it was suggested that their model can be used for reactive transport with 
dissolution or precipitation, the demonstration was limited to only melting of the solid phase. 
Chen et al. (2013b) combined the LBM and the VOP to simulate multiphase reactive transport 
with phase transition and dissolution–precipitation processes. This pore-scale model can 
capture coupled non-linear multiple physicochemical processes including multiphase fl ow with 
phase separation, mass transport, chemical reaction, dissolution-precipitation, and dynamic 
evolution of the pore geometries. The model was used to study the thermal migration of a brine 
inclusion in a salt crystal. However, the pore-scale model was limited to the liquid–gas two-
phase fl ow within a single-component water-vapor system, and the transport of only a single 
solute was considered. To overcome these problems, Chen et al. (2014b) developed a two-
phase multi-mixture model based on the pseudo-potential LB model (Shan and Chen 1993), 
the mass transport LB model and the VOP model for multi-component multiphase reactive 
transport with dissolution–precipitation processes. After the two-phase system is constructed 
using a unifi ed liquid component and a unifi ed gas component, the mass transport of each 
component in the corresponding phase is solved using the mass transport LB model. The 
dynamic evolutions of the liquid–solid interfaces due to dissolution–precipitation reactions are 
captured using the VOP method. 

Electrokinetic transport

Electrokinetic fl ow, which involves multiple processes including fl uid fl ow, electrostatic 
interaction, species diffusion, and sometimes energy transfer, is pervasive both in nature and in 
engineered systems (Li 2004; LinkMasliyah 2006). Although numerous theories and models 
for large-scale electrokinetic fl ows have been developed for almost a century (Bancroft 1926; 
Li 2004), only in recent decades has the electrokinetic transport been applied at micro- and 
nano-scales. The Poisson–Boltzmann (PB) model, composed of a Navier–Stokes equation for 
fl uid fl ow and a PB equation for electric potential distribution, has been widely used for analysis 
and prediction of electrokinetic fl ows in microchannels (Li 2004; Karniadakis et al. 2005; 
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Wang and Kang 2009; Wang et al. 2010a,b). The Boltzmann distribution assumption of ions 
in electric double layer (EDL) leads to the decoupling between the fl uid fl ow and the ion 
distribution, simplifying the predictions. The lattice spacing can be based on the Debye length 
representing an electrical double layer thickness (~1–20 nm for typical aqueous solutions), 
which was suffi cient to represent the main electrolyte fl ow within the microchannel (e.g., 
Wang et al. 2008). Many algorithms and analyses based on the PB model have been proposed 
for understanding electrokinetic fl uid mechanics and optimizing electrokinetic microdevices 
(Holst et al. 2000; Li 2001; Guo et al. 2005; Wang et al. 2006; Chen et al. 2007; Shi et al. 2008). 
However, the Boltzmann distribution is an equilibrium model with questionable applicability 
when ions have macroscopic motion (advection or diffusion), surface is heterogeneously 
charged, or the bulk solution boundary condition is not satisfi ed in the place suffi ciently far 
away from the charged surface. In contrast, the dynamic model uses the Nernst–Planck equation 
(Eqn. 5) for ion transport instead of the hypothesized Boltzmann distribution (Levich 1962). 
In the dynamic model, each transport process is governed by the corresponding fundamental 
dynamic equation. The dynamic model has been used to validate the PB model by a few 
researchers (Qu and Li 2000; Yang et al. 2001; Fu et al. 2003; Kang and Suh 2006; Baldessari 
2008), yet it was reported that the PB model failed in the case of overlapped double layers (Qu 
and Li 2000; Kang and Suh 2006). 

Because the transport processes infl uence each other, the governing equations in the 
dynamic model are coupled together, posing a great challenge to the numerical solution. Wang 
and Kang (2010) developed a numerical framework to solve the dynamic model to study the 
applicability of the PB model for electrokinetic fl ows in microchannels using coupled LBMs. 
The governing equation for each transport process is solved by an LBM and the entire process 
is simulated iteratively. Later, Yang et al. (2014b) developed an MRT-LBM for the Nernst–
Planck (NP) equation to solve the double-diffusive-convection equation having the cross 
diffusion effects in a channel of a 0.8 μm width, and demonstrated that the MRT-LBM is more 
accurate than an SRT-LBM for the NP equation.

Coupled LBM-DNS for multicomponent reactive transport processes

Due to accurate, fi ne resolution representation of pore structures and fl ow fi eld, pore-
scale reactive transport models including LBM are often computationally expensive. The 
computational expense of these pore-scale models can be highlighted when the reaction occurs 
locally, compared to the size of model domain of interest. To overcome the computational 
expense of pore-scale models, a variety of hybrid methods have been developed by coupling 
different scale models (e.g., Weinan et al. 2007). Here we briefl y introduce the recent 
development of coupled methods involving LBM.

LBM now has expanded capabilities for pore- and continuum-scale coupling with 
continuum-based methods (e.g., FVM, FDM, FEM). In the multiscale formulation, the key 
to improved numerical stability, accuracy, and computational effi ciency is a coupling strategy 
to transfer information between two neighboring regimes of different methods. Luan et al. 
(2010) developed an analytical expression (i.e., reconstruction operator (RO)) to transfer 
the velocity information at the continuum scale obtained using FVM to the single-particle 
distribution function for LBM within the overlapping region. Furthermore, Luan et al. (2011) 
coupled a local grid refi nement of LB (multi-block LBM) with FV for multiscale simulations 
and successfully demonstrated the accuracy and effi ciency of the multi-block LBM for fl uid 
fl ows around complex solid geometries. A coupled LB–FV method also has been adopted for 
different physical processes. For example, Zarghami et al. (2012) developed a cell-centered 
FV method for discretizing the SRT to improve the stability of the fl ow fi elds over a range of 
Reynolds numbers (Re). More recently, coupled LB–FV methods have been developed for 
reactive transport processes for multiphysics problems. Chen et al (2013a) used a multiscale 
modeling framework with a coarse (FVM region)-fi ne (LBM region) grid system to simulate 
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electro-chemical transport reaction in a membrane fuel cell system. They adopted RO methods 
(Luan et al. 2010, 2011) to transfer density, velocities, and concentration at the continuum 
scale (FVM) to distribution functions for density and concentration (e.g., Eqn. 17, 26) at the 
pore scale in the LBM and achieved a maximum grid size ratio of 10:1 between FVM and 
LBM regions. Following this work, a generalized RO methodology was proposed for fl uid 
fl ow, heat transfer, and reactive transport processes (Chen et al. 2013b). A unifi ed coupling 
scheme for coupled LB–FVM was recently developed for unsteady fl uid fl ow and heat transfer 
by deriving a generalized form of RO (Tong and He 2015) where the coupling fl exibility was 
generalized for multi-physics problems. 

Hybrid approaches coupling LB for fl ow and FD or FV for reactive transport have also been 
developed for mineral precipitation and dissolution in porous media (Yu and Ladd 2010; Yoon 
et al. 2012). Yu and Ladd (2010) demonstrated the movement of the solid–fl uid interface due to 
dissolution by constructing a piecewise continuous surface which can remap the surface to the 
regular gird system. Yoon et al. (2012) also showed that the concentration fi eld can be solved 
as a steady solution and FVM can be computationally effi cient for the concentration fi eld. This 
hybrid approach validated the update algorithm of the solid phase against experimental data 
obtained in a micromodel and it demonstrated that coupling LB–FVM for reactive transport 
has the potential of using advanced reactive transport codes such as PFLOTRAN (Lichtner 
et al. 2014) with a proper interface module. Recently Patel et al. (2014) coupled the LBM 
for solute transport with the generic geochemical code, PHREEQC (Parkhurst and Appelo 
2013). The heterogeneous reactions at the mineral–fl uid interface are treated as pseudo-
homogeneous reactions by incorporating an additional source (i.e., collision) term computed 
from the PHREEQC to the fl uid node adjacent to a mineral node. This approach was validated 
with a set of benchmarks including the impact of pH, surface area, and arrangement of mineral 
grains on dissolution rate and pore structure evolution. In addition, Boek et al. (2014) recently 
developed a new hybrid LB and particle tracking method to study fl ow and reactive transport 
in porous media. The hybrid method used a graphical process unit (GPU) algorithm for large 
scale LB calculations to enhance computational effi ciency. Particle advection was then solved 
with LB fl ow fi elds using a second-order predictor-corrector scheme, and particle diffusion 
with a random walk followed by heterogeneous reaction was solved. 

THREE-DIMENSIONAL CHARACTERIZATION OF PORE TOPOLOGY 

Over the past two decades multiscale imaging methods for geomaterials such as X-ray 
computed microtomography (micro-CT), laser scanning confocal microscopy (LSCM), 
focused ion beam-scanning electron microscopy (FIB-SEM), and energy dispersive X-ray 
spectroscopy (EDS) have been tremendously improved. Major advances in 3-D imaging 
techniques can be traced back to early 1990s when methods for characterizing geomaterials 
at the microscopic scale using confocal microscopy and micro-CT was established (Spanne 
et al. 1994; Fredrich et al. 1995; Coker et al. 1996; Coles et al. 1998). The most predominant 
3-D imaging method used for geomaterials is a non-destructive micro-CT technique. Micro-
CT has been used to measure the geometric properties of pore topology and multiple fl uid 
phases at an order of microns. Theoretical and detailed technical aspects of micro-CT have 
been extensively reviewed by Wildenschild and Sheppard (2013) who also highlighted issues 
associated with the imaging process. Recently, 3-D micro-CT images of a real soil at 25 μm 
resolution were used to identify a mixed medium containing both pore and porous regions 
where small pores below the image resolution were treated as porous regions (Yang et al. 
2014a). The mixed medium was then used to validate a unifi ed multi-scale model for pore-
scale fl ow simulations in a mixed medium by applying the Stokes–Brinkman equations for 
variably saturated soils. 
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LBM has been extensively applied for a variety of complex fl uid fl ow problems, including 
single and multi-phase fl ow and reactive transport in complex geometries obtained from 
micro-CT imaging (Ladd 1994; Martys and Chen 1996; Keehm 2004; Fredrich et al. 2006; 
Boek et al. 2014; Jiang and Tsuji 2014; Gao et al. 2015). A major advantage of LBM is the 
relative ease of accounting for very complex pore-geometries from segmented image data due 
to its discrete dynamics (Chen and Doolen 1998). This method enables pore-scale simulations 
of fl uid fl ow and transport phenomena to enhance fundamental insights in porous media. 
Chen et al. (2007) and Zhang (2011) provide interesting reviews and fundamentals for single 
and multi-phase fl ows, respectively. For example, 3-D rendering of the pore phase in natural 
Castlegate sandstone at 1.67 μm resolution from micro-CT images is shown in Figure 8a 
(Fredrich et al. 2006). Permeability predictions from LB simulations for 1 to 3 mm3 image 
volumes show a good agreement, over 4 orders of magnitude in scale, with values measured 
experimentally in the core samples (25.4 mm in diameter and 50.8 mm in height). This 
fi nding revealed the representative volume and length scales that are necessary to characterize 
geometrically complex porous media and predict fl uid transport properties at the macroscale. 
More recently, LB-based approaches were used to investigate the porosity dynamics due to 
precipitation and dissolution in 3-D pore structures from micro-CT images (Jiang and Tsuji 
2014; Gao et al. 2015). These recent studies using micro-CT images can be combined with 
other imaging techniques (e.g., backscattered electron mapping coupled with X-ray based 
methods) for mineralogical distribution (Peters 2009; Landrot et al. 2012) to investigate 
coupled fl uid fl ow and geochemistry, as well as the emergence of coupled behaviors due to 
biogeochemical reactions. Furthermore, 3-D digital representations of rock from micro-CT 
images and physics modeling based on these pore structures provide the opportunity to further 
advance our quantitative estimates of permeability, elastic moduli, and electrical conductivity 
of several representative 3-D rock samples (Arns et al. 2002, 2009; Andrä et al. 2013a,b). 

Recently, Yoon and Dewers (2013) rigorously quantifi ed the existence of a statistical 
representative elementary volume (SREV) using FIB-SEM imaging of nano-porous chalk 
using LB simulations with 3-D reconstructed chalk data as shown in Figure 8b. They 
highlighted the quantitative analysis of nano-pore structural features impacting pore-scale 
fl ow and transport properties and confi rm that the size of the SREV for a sample of Gulf 
Coast chalk can be established at ~10 m based on anisotropic permeability, tortuosity, and 
specifi c surface area. With such clear scale separation, upscaling averaging techniques, such as 
homogenization, permits the application of continuum physics principles to coupled thermo-
hydro-mechanical-chemical (THMC) modeling. However, porous materials with a high degree 

Figure 8. (a) 3-D rendering of the pore phase in natural Castlegate sandstone at image resolution of 
1.67 μm [Used by permission of John Wiley and Sons, from Fredrich JT, DiGiovanni AA, Noble DR 
(2006) Predicting macroscopic transport properties using microscopic image data. Journal of Geophysical 
Research, Vol. 111, Fig. 7, p. B03201-10] and (b) 3-D reconstructed pore (white) topology over a sample 
volume of ~14 × 14 × 10 μm3.



416 Yoon, Kang & Valocchi

of physical and chemical heterogeneity exist with no clear scale separation (e.g. Bilger et al. 
2005). The problem of scale relating to the traditional FIB-SEM with gallium (Ga) ion milling 
(e.g., sample volumes in the order of ~10 × 10 × 10 μm3) is now being confronted, which 
makes the FIB-SEM analysis more qualitative than quantitative. Newly emerging techniques 
such as the FIB with an inductively coupled plasma ion source (plasma-FIB) (e.g., Smith et 
al. 2014) and X-ray microscopy (XRM) or nano-CT (e.g., Gelb et al. 2011) will enable us to 
overcome sample size limitations and to characterize multi-scale hierarchical pore topology. 

LB-BASED APPLICATIONS FOR PRECIPITATION, DISSOLUTION, AND 
BIOFILM GROWTH AND THEIR IMPACT ON FLOW ALTERATION

Pore cementation/dissolution and fl ow feedback

Here we summarize a few of LB-based works that emphasize coupling among fl uid fl ow, 
reaction, and fl ow feedback. Kang and co-workers have applied an LB pore-scale reactive 
transport model to study heterogeneous chemical reactions in a simple pore geometry under a 
variety of conditions (Kang et al. 2002, 2006). For example, Kang et al. (2006) demonstrated 
that the competition between diffusive and advective transport can alter permeability during the 
dissolution of different sizes of fracture aperture. More recently, Kang et al. (2014) applied a 
reactive transport LB model to study the change of porosity and permeability due to dissolution 
over a wide range of Péclet (Pe, the ratio of advective to diffusive transport) and Damköhler 
(Da, the ratio of reaction rate to diffusive mass transfer rate) numbers. They demonstrated that 
the permeability-porosity relationship is affected by different dissolution regimes in terms 
of Pe and Da numbers, but also by the specifi c porous medium structure. In particular, the 
relationship for the more geometrically complex porous medium shows more complexity than 
that for the simple fractured medium (Fig. 9). For the complex medium, a combination of a 
high Pe and Da (i.e., fast-fl ow and fast-reaction regime) results in wormholing and exhibits 
the fastest permeability increase. At a moderate Pe and high Da, a transition from a transport-
limited dissolution regime to wormholing is observed for the complex medium as shown in 
Figure 9. Huber et al. (2014) applied a newly developed LB model with a new boundary 
scheme for heterogeneous reactions to study the permeability change of a porous medium 
due to dissolution and precipitation. They highlighted that relative permeability changes differ 
under dissolution and precipitation regimes. The permeability changes during dissolution were 
controlled by both reaction and transport (as the transport regime transitions from diffusion 
to advection). Increases in permeability correlate positively with Pe, but negatively with Da 
for a given amount of porosity increase. On the other hand, increases in precipitation correlate 
negatively with Pe, but positively with Da. This behavior suggests the presence of a hysteresis 
in the permeability and porosity relationship during cycles of dissolution and precipitation.

Jiang and Tsuji (2014) developed a LB–FVM model for exploring the porosity and relative 
permeability changes caused by carbonate precipitation in 3-D digital microstructures obtained 
from micro-CT imaging of a Berea sandstone sample. Changes of pore structures caused 
by carbonate precipitation are shown in Figure 10. For the sake of simplifi cation, chemical 
reactions in aqueous solution were assumed in equilibrium and only Ca2+ concentration was 
solved by the advection-diffusion model. All pore structures were assumed reactive surfaces 
for carbonate precipitation. The porosity was reduced from 0.21 to 0.103 after ~ 20 days 
of precipitation (Fig. 10). The porosity change corresponds to the reduction of permeability 
from 769 mD to 11 mD. In particular, simulations of multiphase fl ow in the altered pore 
structure demonstrated that reduced pore space (a fi nal case in Figure 10) affects the relative 
permeability of the nonwetting phase more signifi cantly than that of the wetting phase. This 
fi nding implies that mineralization may signifi cantly impact the injectivity of CO2 in water 
wetting conditions during geologic CO2 storage. 



Latt ice Boltz mann-Based Approaches for Pore-Scale Reactive Transport 417

Figure 9. Two different porous medium structures (left) and corresponding permeability-porosity relation-
ships (right) [Used by permission of Elsevier, from Kang Q, Chen L, Valocchi AJ, Viswanathan HS (2014) 
Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. Journal of 
Hydrology, Vol. 517, Figures 1-4, p. 1051-1052].

Figure 10. Evolution of pore structure resulting from CaCO3 precipitation along a cross-sectional slice 
perpendicular to the main fl ow direction (light gray for original grain and dark red for precipitated regions). 
3-D pore structure reconstructed from micro-CT images of a Berea sandstone was used [Used by permis-
sion of American Physical Society, from Jiang F, Tsuji T (2014) Changes in pore geometry and relative 
permeability caused by carbonate precipitation in porous media. Physical Review E, Vol. 90, Fig. 8, p. 
053306-6].
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Microfl uidic experiments for pore cementation and fl ow blocking

Recent developments of in situ measurement techniques for pore-scale reactive transport 
experiments provide a unique opportunity to test and validate pore-scale modeling approaches. 
In particular, a coupled pore-scale reactive transport model was rigorously validated against 
well-controlled microfl uidic experimental results to demonstrate the importance of realistic 
pore confi gurations, fl ow and transport physics and geochemistry, and to predict how mineral 
precipitation alters fl ow paths by pore plugging for different chemical conditions (Yoon et 
al. 2012; Fanizza et al. 2013; Boyd et al. 2014; Oostrom et al. 2014). The coupled model 
consists of LBM for fl uid fl ow and FVM for reactive transport with mineral precipitation 
and dissolution. Heterogeneous reactions were solved using the boundary condition given 
by Equations (10–13). Pore-scale experiments led by Werth and co-workers (Zhang et al. 
2010a; Fanizza et al. 2013; Boyd et al. 2014) were used. The micromodel consisted of a 
2 × 1 cm pore network containing a pattern of cylindrical posts (300 m in diameter) with 
180-m pore spaces and 40-m pore throats, a depth of ~20–40 m, and a porosity of ~0.39. 
The micromodel surface was treated thermally to have a thin layer (~100 nm’s) of silicon 
dioxide, mimicking natural materials. Representative experimental observations are shown in 
Figure 11.

Transverse mixing-induced mineral precipitation experiments were performed by injecting 
solutions containing reactants (e.g., Ca2+, Mg2+, UO2

2+, CO3
2-, PO4

3-) through two separate 
inlets of a micromodel. The amount of mineral precipitation, snapshots of the morphology of 
precipitates, elemental analysis with Raman spectroscopy, and LSCM imaging and tracer tests 

Figure 11. (a) A snapshot of calcium carbonate precipitation with 25mM Ca2+ (upper inlet) and 
25mM CO3

2- (bottom inlet). Precipitation patterns at three different locations are highlighted [Used by 
permission of John Wiley and Sons, from Yoon H, Valocchi AJ, Werth CJ, Dewers T (2012) Pore-scale 
simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfl uidic pore net-
work. Water Resources Research, Vol. 48, Fig. 1, p. W02524-3]. (b) Tracer test result after pore blockage. 
A profi le of 3-D precipitates halfway down the length of the micromodel was obtained using confocal 
microscope, showing a complete pore blockage over a ~40 μm depth [Used by permission of John Wiley 
and Sons, from Fanizza MF, Yoon H, Zhang C, Oostrom M, Wietsma TW, Hess NJ, Bowden ME, Strath-
mann TJ, Finneran KT, Werth CJ (2013) Pore-scale evaluation of uranyl phosphate precipitation in a model 
groundwater system. Water Resources Research, Vol. 49, Figures 10–11, p. 886]. (c) Microscopy images 
of CaCO3 polymorphs in the presence of 40 mM Mg2+ with 10mM Ca2+.(upper inlet) and 10mM CO3

2- 
(bottom inlet). The central mixing line in the micrometer is shown in an upper-left pore body [Used by 
permission of Elsevier, from Boyd T, Yoon H, Zhang C, Dehoff K, Fouke B, Valocchi AJ, Werth CJ (2014) 
Infl uence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-
etched pore network. Geochimica et Cosmochimica Acta, Vol. 135, Fig. 5, p. 329].
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for pore blockage were measured. Specifi cally, the coupled LB–FVM approach for pore-scale 
reactive transport problems includes calcium carbonate precipitation and dissolution kinetics 
(Yoon et al. 2012), uranyl phosphate precipitation to account for reaction mechanisms under 
different chemical conditions (Fanizza et al. 2013), and the impact of magnesium on calcium 
carbonate precipitation (Boyd et al. 2014). In particular, tracer tests (e.g., Fig. 11b) indicate 
that mineral precipitation along the center mixing zone led to substantial pore blockage under 
all experimental conditions. The observed changes in crystal shape, size, polymorph, and 
precipitation rate under different chemical conditions suggest that proper chemistry systems 
be considered in determining the impact of pore blockage on mixing and reaction. 

In Yoon et al. (2012) a chemical system for CaCO3 precipitation and dissolution includes 
fi ve primary components: Na+, Ca2+, H+, CO3

2-, and Cl-, and a number of secondary species: 
OH-, HCO3

-, and H2CO3 (aq). Simulation results are shown in Figure 12. The reactive transport 
model included the impact of pH upon carbonate speciation and calcite dissolution using the 
form of the calcite rate law (Chou et al. 1989):

+
2 31 2 H CO 3H

,mk k a k a k   (42)

where km is the reaction rate constant in Equation (10), k1, k2, and k3 are the empirically 
obtained reaction rate constants, and ai is the activity of species i. The calcite reaction rate 
is pH-dependent (pH < 7), but becomes constant above a pH of ~ 7.5. A similar chemical 
system for CaCO3 precipitation and dissolution in the fl owing system was used in the literature 
(Emmanuel and Berkowitz 2005; Tartakovsky et al. 2008; Flukiger and Bernard 2009; Kang et 
al. 2010; Molins et al. 2012). In the above formulation, the key discrepancy between pore and 
continuum scales is the reactive surface area. As described earlier, heterogeneous reactions 
at mineral interfaces can be treated through the boundary conditions (Eqn. 11). In particular, 
Yoon et al. (2012) developed an algorithm to update a specifi c surface area over time in the 
micromodel, depending on the orientation of CaCO3 growth and dissolution. Updating the 
surface area properly was critical to accounting for the overall reaction rates as shown in 
Figure 12a. Hence, the specifi c surface area was updated at each iteration step.

Figure 12. (a) Comparison of CaCO3 precipitate areas, (b) experimental image of CaCO3 precipitates (top), 
simulated CaCO3 volumetric content (bottom), and (c) simulated pH distribution at 4 min [Used by permis-
sion of John Wiley and Sons, from Yoon H, Valocchi AJ, Werth CJ, Dewers T (2012) Pore-scale simulation 
of mixing-induced calcium carbonate precipitation and dissolution in a microfl uidic pore network. Water 
Resources Research, Vol. 48, Figures 6–7, W02524-9].
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It was also found that the proper estimation of the dissolution rate was necessary to 
adequately simulate the decrease of precipitate area (i.e., enhanced dissolution) after ~ 18 min. 
In this particular case, the dissolution rate increased by a factor of 100. Based on Raman 
spectroscopy and image analysis, a higher dissolution rate was attributed to stability of 
CaCO3 polymorphs including amorphous calcium carbonate (ACC) and vaterite at early stages. 
ACC is the thermodynamically least stable among all calcium carbonate (CaCO3) polymorphs, 
followed by vaterite, aragonite, and calcite. Under highly supersaturated conditions, ACC 
nanoparticles with a size of ~ 30 nm are formed within a minute; subsequently, these particles 
grow and transform with time to more stable crystalline forms such as vaterite crystals (Pouget 
et al. 2009; Liu et al. 2010), and eventually calcite (Ogino et al. 1987; Rieger et al. 2007). These 
polymorphs became unstable once the central part of pore body was blocked by precipitates, 
and then may have dissolved and re-precipitated under fl owing condition. Unlike static 
conditions, dissolved components can be transported away in the fl owing conditions, which 
can enhance dissolution rate dramatically. In addition, the surface features (e.g., pits) at nano-
scale may enhance the dissolution. It was later computed that under highly supersaturated 
conditions used in the experiment the saturation ratio of ACC is greater than unity (Boyd et 
al. 2014), indicating that initial precipitation is likely to be initiated through homogeneous 
nucleation.

The coupled pore-scale reactive transport model was also used to account for the observed 
CO2 seeps at the Grand Wash Fault fi eld site (Crystal Geyser, Utah), a natural analog to 
geologic CO2 sequestration (Altman et al. 2014). Field observations along the Grand Wash 
fault suggest that CaCO3 precipitation alters fl ow paths by fault zone cementation, resulting in 
shifts in preferential fl ow paths of the upward migrating CO2-saturated-brine. Pore blocking 
was observed to be faster in a fracture near the main fault and propagated further away from 
the main fault, which qualitatively refl ects the observed pattern at the Grand Wash Fault. This 
demonstrates that inclusion of more realistic pore confi gurations and geochemical composition 
may enhance our fundamental mechanistic explanations of how calcite precipitation alters 
fl ow paths by pore plugging. 

Example results illustrating feedback between fl ow and biofi lms

The pore-scale biofi lm models have been used to investigate several important processes 
in porous media, including clogging and contaminant transformation, microbially-induced 
calcium carbonate precipitation (MICP), and bioengineering. We summarize a few of the many 
interesting works that emphasize coupling among fl uid fl ow, mass transfer, and biofi lm growth. 
For practical applications, bioclogging has been studied for many years using small porous 
medium reactors in the laboratory where it is generally only possible to observe bulk changes 
in permeability and other macroscopic properties (Vandevivere and Baveye 1992; Seifert and 
Engesgaard 2012). However, most pore-scale modeling studies of bioclogging have been in 
2-D. Recently, von der Schulenburg et al. (2009) have conducted LB simulations in a 3-D bead 
packing. The porous medium geometry is derived from images taken by magnetic resonance 
imaging of saturated packing of random glass beads with mean diameter 400 m and overall 
porosity 0.59. The biofi lm develops over time, substrate is consumed, and the heterogeneity 
of the velocity fi eld increases. The LB simulation results show that the computed permeability 
was smaller than the value computed from a commonly used correlation equation (i.e., the 
Ergun equation). Comparison of 2-D and 3-D simulations revealed that 3-D simulation is 
required to accurately model bioclogging.  

Pintelon et al. (2012) extended the work of von der Schulenburg et al. (2009) by including 
biofi lm detachment and allowing water fl ow through the biofi lm to investigate the impact 
of biofi lm permeability and strength upon macroscopic properties such as the Da number 
and permeability. The level-set method of Pintelon et al. (2009) was used to include shear 
induced detachment. Biofi lm permeability was included by setting the fl uid viscosity within 
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the biofi lm to a high value, similar to the approach used by Thullner and Baveye (2008) in their 
pore network model. MRT-LBM was used to solve for the fl ow, and the different viscosity 
values for the fl uid and biofi lm nodes were achieved by adjusting the relaxation rates. A 3-D 
bead pack porous medium is considered, similar to that of von der Schulenburg et al. (2009). 
Results from a 2-D slice transverse to the mean fl ow direction are shown in Figure 13. The 
top row is for a biofi lm with high material strength while the bottom is for a weak biofi lm. 
The parameter X equals the viscosity ratio of the biofi lm to fl uid cells, so from left to right the 
biofi lm region is more permeable to water fl ow. The biofi lm with the weaker cohesive strength 
has signifi cantly less overall accumulation than the stronger biofi lm; biofi lm permeability has 
a secondary infl uence because fl uid shear stress is smaller for the more permeable biofi lm. The 
permeability reduces over time as the biomass accumulates. It was observed that the biofi lm 
permeability needs to be relatively high (low X) before there is a signifi cant impact upon the 
overall permeability of the system. 

Unlike the cases reported above with a single limiting substrate, biofi lms can develop 
in the situation where separately fl owing electron donors and acceptors meet and mix. This 
situation can occur during in situ bioremediation along the fringes of a contaminant plume from 
a persistent source where oxygen present in the ambient groundwater mixes with a dissolved 
organic pollutant resulting in a “reaction zone” with biomass along the plume fringe (e.g., 
Cirpka and Valocchi 2007; Valocchi 2012). Werth and co-workers (Zhang et al. 2010b; Yoon 
et al. 2014) have used 2-D microfl uidic pore networks to investigate these transverse reaction 
processes experimentally as described in the precipitation section. The electron donor and 
acceptor were injected through two separate inlets, allowing two substrates to mix around the 
central mixing zone. Initially, a pure bacterial strain was inoculated and the resulting biofi lm 
developed along the mixing zone where both substrates are present. Following the experiments 

Figure 13. 2-D slice from the 3-D model results of Pintelon et al. (2012). Biomass is shown in green along 
with the shear stress fi eld after 27 h of growth. Left panel is for an impermeable biofi lm, and the biofi lm 
permeability increases from left to right. Biomass was allowed to detach depending on adjacent shear 
stresses; the top row is a comparatively strong biofi lm, while the bottom row is a comparatively weak bio-
fi lm. As the parameter X decreases, the biofi lm permeability increases. [Used by permission of John Wiley 
and Sons, from Fredrich JT, DiGiovanni AA, Noble DR (2006) Predicting macroscopic transport properties 
using microscopic image data.  Journal of Geophysical Research, Vol. 111, Fig. 7, B03201-10].
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in Zhang et al. (2010b) where the biofi lm developed with the aerobic degradation of the 
herbicide (i.e., R-2,4-DP), Yoon et al. (2014) introduced another substrate to induce adaptation 
of the strain to degrade a new substance on which an unadapted strain is not able to grow. Over 
a long term operation (~ 230 days), relatively thick and sturdy biofi lm was developed along 
the mixing line. Due to the presence of thick and non-uniform biofi lm, transverse mixing 
increased dramatically, which was also signifi cantly affected by fl owrates. 

Tang et al. (2013) developed a 2-D pore-scale model that uses LB-FDM for the fl ow 
fi eld and the advection–diffusion–reaction equations (with dual Monod kinetics), and the 
CA model for biofi lm spreading. There was a good qualitative comparison between the growth 
pattern in the model and micromodel experiment, for a close up of the system in the mixing 
zone (Fig. 14). The biofi lm develops along the downstream side of the cylindrical post and 
extends out into the pore body. It is important to note that the model biofi lm would completely 
bridge the pore body unless the CA rules are modifi ed to prevent biomass spreading to zones 
with fl uid shear above a certain threshold (Knutson et al. 2005). In the model of Tang et al. 
(2013), the biomass is assumed to be impermeable, and hence the growing biofi lm reduces the 
velocity in the mixing zone which results in decreased transverse mixing between the donor 
and acceptor (Fig. 14). The importance of this effect was further evaluated by repeating their 
simulations using the velocity fi eld computed without any biomass. They then computed the 
mass of donor degraded from the inlet to the outlet and compared that to what was measured 
in the experiment. The results clearly show that the feedback among biofi lm growth, velocity 
alteration, and mass transfer is important. Neglecting the dynamic changes in the pore space 
and instead using a constant velocity results in an overestimation of mixing and overall 
reaction.

There is an increasing knowledge about the mechanical properties of biofi lms, which 
will lead to more complete and accurate models of attachment and detachment processes. 
Although several groups have incorporated some of these processes into discrete CA or IB 
models of biofi lms (e.g., Pintelon et al. 2012 ; Bottero et al. 2013), physics-based models using 

Figure 14. Comparison of the biofi lm spreading in the experiment (top) of Zhang et al. (2010b) with the 
model results (bottom) by Tang et al. (2013) after 11 days (left) and 24 days (right). [Top: Used by permis-
sion of American Chemical Society, from Zhang C, Kang Q, Wang X, Zilles JL, Mü ller RH, Werth CJ 
(2010b) Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media. 
Environmental Science & Technology, Vol. 44, Fig. 3, p. 3088; Bottom: Used by permission of John Wiley 
and Sons, from Tang Y, Valocchi AJ, Werth CJ, Liu H (2013) An improved pore-scale biofi lm model and 
comparison with a microfl uidic fl ow cell experiment. Water Resources Research, Vol. 111, Fig. 6, p. 8376].
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mixture theory (e.g., Lindley et al. 2012) or dissipative particle dynamics (Xu et al. 2011) may 
be more fl exible. These more complete mechanical models could address the transport and 
possible re-attachment of biomass that detaches from upstream.

FUTURE RESEARCH DIRECTIONS 

We have summarized LBM models for fl uid fl ow and reactive transport processes involving 
pore structure evolution and fl ow feedback due to mineral precipitation and dissolution and 
biofi lm dynamics. In particular, recent algorithms for heterogeneous reactions and biofi lm 
growth at mineral surfaces were thoroughly reviewed. Several key hybrid approaches combining 
LB with other methods were briefl y introduced. Due to the growing body of literature over 
diverse disciplines, many ongoing research areas are only briefl y cited and summarized. 
Despite the signifi cant amount of works, upscaling coupled pore-scale phenomena including 
heterogeneous biogeochemical reactions, chemical–mechanical–hydrological coupling, and 
links between pore- and continuum-scale rates are still frontier research questions. 

Recent progress in imaging, experimental and computing technologies has resulted in 
an increased adoption of digital visualization or direct measurement methods in pore-scale 
reactive transport studies. Using multi-scale imaging methods, we are now able to directly 
measure how surface chemistry, biogeochemical reactions, and pore topology impact reactive 
transport processes at the pore scale. Likewise, recent increases in parallel computing and 
computational methods allow us to simulate reactive transport processes in great detail. For 
example, it will be possible within the near future to simulate reactive transport experiments 
directly on the reconstructed 3-D image of porous and fractured media from nano to core 
scales. Although we focused on reviewing fl ow and reactive transport processes under 
saturated conditions, unsaturated porous media have also been recently studied (e.g., Raoof 
2011; Yang et al. 2014a). Coupled pore-scale fl ow and reactive transport under  variably 
saturated conditions will be an important future research area due to its signifi cance for soil 
biogeochemical processes in terrestrial systems for carbon cycle and the interaction between 
hydrological and biogeochemical processes for water and mass fl uxes. 

Many of the important engineering challenges that motivate the study of biofi lms in porous 
media (e.g., bioclogging, microbial enhanced oil recovery, bioremediation) involve coupled 
biotic and abiotic processes. For example, injection of electron donors for biostimulation to 
reduce dissolved metals in groundwater at some US DOE facilities can require modeling a 
complex network of biotic and abiotic reactions (e.g., Scheibe et al. 2006). However, pore-
scale modeling has been limited because there are conceptual and mathematical challenges 
for modeling simultaneous biofi lm spreading and mineral precipitation. A recent attempt by 
Zhang and Klapper (2014) using the phase-fi eld model is an encouraging sign of developing 
a pore-scale model for coupled biotic and abiotic processes. Some researchers have begun 
to explore so-called in silico models of microbial metabolism based on genomic knowledge 
instead of the phenomenological Monod model for substrate utilization (e.g., Fang et al. 2011) 
and to incorporate microbial motility characteristics into cell-scale and porous media models 
(e.g., Kusy and Ford 2007). Inclusion of more realistic microbial phenomena in pore-scale 
biofi lm models will signifi cantly improve model predictions of coupled biotic and abiotic 
processes. 

The LB-based approaches and experimental and numerical results reviewed in this article 
are leading to better understanding of complex problems of evolving pore morphology due to 
tightly coupled transport and nonlinear reactions. However, the ultimate goal is to improve 
predictive capability at larger continuum and fi eld scales. As conventional homogenization 
and volume-averaging techniques are not valid due to process nonlinearity and the lack of 
scale separation, pore-scale modeling is enabling new methods of upscaling, including multi-
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scale, multi-physics approaches (Chu et al. 2013; Tomin and Lunati 2013; Varloteaux et 
al. 2013; Scheibe et al. 2015). A key assumption of the methods reviewed here is that all 
processes as well as the pore geometry can be quantifi ed unambiguously at the smallest scale 
(i.e., pore scale). There are new emerging problems (e.g., unconventional resources in shale 
and carbonate rocks, caprock for CO2 sequestration) for which it may be necessary to model 
key processes at the nanometer scale, but the practical scale of observation is generally limited 
to a micro-scale (10’s–100’s microns). New approaches based on mesoscopic theories, which 
connect the microscopic and macroscopic descriptions of the dynamics, provide a promising 
outcome (DOE 2012). Key relationships and parameter values at the macroscopic scale can be 
constructed from microscopic-scale simulations including sub-micron scale, which account for 
a range of reaction and fl ux regimes. For such problems, the LB-based modeling framework 
reviewed in this article as well as other multiscale simulation methods can help us improve our 
understanding of reactive transport processes by elucidating knowledge gaps and providing a 
tool in predicting coupling relevant processes across scales.
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