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INTRODUCTION

The recent profusion of microscopic characterization methods applicable to Earth Science 
materials, many of which are described in this volume (Anovitz and Cole 2015, this volume; 
Noiriel 2015, this volume), suggests that we now have an unprecedented new ability to 
consider geochemical processes at the pore scale. These new capabilities offer the potential 
for a paradigm shift in the Earth Sciences that will allow us to understand and ultimately 
quantify such enigmas as the apparent discrepancy between laboratory and fi eld rates (White 
and Brantley 2003) and the impact of geochemical reactions on the transport properties of 
subsurface materials (Steefel and Lasaga 1990, 1994; Steefel and Lichtner 1994; Xie et al. 
2015). It has only gradually become apparent that many geochemical investigations of Earth 
materials have suffered (perhaps inadvertently) from the assumption of bulk or continuum 
behavior, leading to volume averaging of properties and processes that really need to be 
considered at the individual grain or pore scale. For example, a relationship between reaction-
induced porosity and permeability change can perhaps be developed based on bulk samples, 
but ultimately a mechanistic understanding and robust predictive capability of the associated 
geochemical and physical processes will require a pore-scale view.

The question still arises: Do we need pore-scale characterization and models in 
geochemistry and mineralogy? The laboratory–fi eld rate discrepancy (or enigma) is a good 
example of where a pore-scale understanding may provide insights not easily achievable 
with bulk characterization and models. If the reasons for this apparent discrepancy between 
laboratory and fi eld rates cannot be explained, then it appears unlikely that scientifi cally 
defensible and quantitative models for a number of important Earth Science applications 
ranging from chemical weathering and its effects on atmospheric CO2, to subsurface carbon 
sequestration, to nuclear waste storage, to contaminant remediation and transport, can be fully 
developed and applied. The reasons for the discrepancy (apparent or real) have been widely 
discussed, and over time the number of possibilities for explaining it have narrowed. One 
potentially important effect that contributes to this apparent laboratory–fi eld rate discrepancy 
is geochemical in origin and has to do with the fact that most laboratory studies do not consider 
mineral dissolution as regulated by the precipitation of a secondary phase, that is, as an 
incongruent reaction. As proposed by Zhu and co-workers and as investigated further by Maher 
and co-workers, the slow precipitation of secondary clay minerals as a result of primary silicate 
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mineral dissolution (e.g., feldspar) can result in an approach to thermodynamic equilibrium 
with respect to the dissolving primary phase, and thus a slowing of the rate of reaction (Zhu 
et al. 2004; Maher et al. 2006, 2009). A second potentially important effect is related to the 
heterogeneous nature of natural porous media, which can result in bypassing of reactive zones 
by groundwater and surface water fl ow (Malmström et al. 2000). At the pore scale, this effect 
can occur when pores and/or micro-environments are not connected to the macropores within 
which most of the fl ow occurs. The result can be that minerals lining these pores contribute 
little or nothing to the overall reactivity of the formation (Peters 2009; Landrot et al. 2012). 
In addition, diffusion boundary layers can form around reactive grains, further reducing the 
rate of reaction relative to the experimental surface reaction rates determined in the absence of 
these transport effects (Li et al. 2008; Noiriel et al. 2012; Molins et al. 2014).

One can argue that the ability to demonstrate a predictive capability for geochemical 
processes, including those operating at the pore scale, is the ultimate test of understanding 
(Steefel et al. 2005). The development of new characterization techniques for the pore scale has 
important implications for the models that can be applied to these systems. One possibility is to 
import the microscopic characterization or mapping as initial or fi nal conditions into true pore-
scale models (Molins et al. 2012, 2014, 2015, this volume; Steefel et al. 2013; Yoon et al. 2015, 
this volume). Another option that typically allows for larger spatial domains to be considered is 
the use of the characterization data in pore network models (Mehmani and Balhoff 2015, this 
volume). A third possible approach that is summarized in this chapter is to make use of “micro-
continuum” models informed by high-resolution geochemical, mineralogical, and physical 
data to describe geochemical pore-scale processes. Micro-continuum geochemical models are 
typically coarser than either the true pore-scale or pore-network models and thus cannot resolve 
pore-scale interfaces between mineral, liquid, and gas. The approach suffers from most of the 
same limitations that apply to larger scale continuum descriptions of porous media, namely 
the inability to resolve pore-scale solid–liquid–gas interfaces and the requirement that many 
parameters and properties (e.g., permeability or reactive surface area) need to be averaged or 
upscaled in some fashion. However, the approach is capable of improving on coarsely resolved 
(meter-scale) models by assigning differing mineralogical/geochemical and physical properties 
(porosity, permeability, and diffusivity) values to the domain, thus making it possible to 
calculate larger scale (bulk) reaction rates and transport properties.

MAPPING OF MODEL PARAMETERS FROM IMAGE ANALYSIS

An important fi rst step in developing micro-continuum pore-scale geochemical models is the 
collection and interpretation of data on the mineralogical, geochemical, and transport properties 
at a fi ne (< mm) scale. Detailed reviews are provided elsewhere on the range of characterization 
techniques available to describe pore-scale geochemical processes (Anovitz and Cole 2015, 
this volume; Navarre-Sitchler et al. 2015, this volume; Noiriel 2015, this volume). Here we 
focus on the approaches that are specifi cally suited for the development of pore-scale parameter 
distributions for micro-continuum modeling, although many of the techniques could also be used 
for direct pore-scale or pore-network modeling where the resolution is suffi ciently high.

The pore-scale parameters of interest for micro-continuum modeling include the porosity, 
mineral volume fractions, and mineral reactive surface area, along with the more challenging 
transport-related parameters of permeability and diffusivity. While porosity is typically 
considered as a scalar quantity and therefore relatively easy to quantify with a variety of 
mapping/characterization techniques, the more important quantity for the purposes of reactive 
transport modeling is the connected porosity (Navarre-Sitchler et al. 2009; Peters 2009; 
Landrot et al. 2012). As demonstrated with modeling of basalt weathering over hundreds of 
thousands of years, the connected porosity is the parameter that controls reactivity under open 
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system conditions (Navarre-Sitchler et al. 2011). Or even where the pores are connected, the 
reactive phases within the pore are coated with other (typically secondary) phases. The fl uids in 
the connected pores then might “see” only the secondary phases (e.g., clay or iron hydroxide) 
rather than the reactive feldspar. In this respect, both the impacts of the porosity and the reactive 
mineral surface area cannot be completely separated from the transport properties of the medium 
under consideration. Similarly, the physical surface area of reactive minerals is another parameter 
that may be relatively straightforward to determine on bulk samples, whether using a grain size 
geometric analysis or using gas adsorption isotherms, e.g., BET methods (Brunauer et al. 1938). 
But the physical surface area of the minerals may not translate to a unique reactivity without 
consideration of the reactive site density, which can vary signifi cantly between natural samples 
(Beig and Lüttge 2006; Bracco et al. 2013).

Two-dimensional and three-dimensional images can be analyzed to extract reactive transport 
model parameters. This includes the sample specifi c parameters of porosity, mineral volume 
fractions and surface areas, diffusivity and even permeability. Details regarding the collection 
and underlying principles of various imaging methods, including 2-D Scanning Electron 
Microscopy (SEM), and 3-D Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM), 
X-ray Computed Micro-Tomography (X-ray microCT), optical petrology and Small Angle 
Neutron Scattering (SANS) of nanoscale porosity have been discussed in other articles (Anovitz 
and Cole 2015, this volume; Noiriel 2015, this volume) and thus will only be mentioned briefl y 
here.

In this article, we will discuss the data processing approaches that can be used to extract 
model parameters from two- and three-dimensional SEM, FIB-SEM, and X-ray microCT 
images. In addition, some of the outstanding issues, such as image segmentation and resolution, 
will be discussed in the context of their effect on parameter estimation. Image segmentation 
refers to the partitioning of the histogram of pixel intensities (SEM imaging) or voxel attenuation 
values (X-ray CT imaging) into one or more categories such as pores and grains. Comparison 
of parameters from bulk samples (e.g., reactivity) and from image-derived micro-continuum 
samples, however, should provide insight into the scaling relationships in reactive porous media. 
Finally, it should be noted that several of these parameters can be measured on bulk samples in 
the laboratory. Parameter estimation from images allows for more discrete parameter evaluation, 
including the ability to map parameters at multiple scales or associated model grid cell sizes.

Porosity

Sample porosity can be easily determined from imaging techniques. Given that porosity is 
an intensive property, it can be computed from either 2-D or 3-D images. Perhaps the simplest 
approach is determining porosity from 2-D SEM images of a polished section. Polished 
sections, including thin sections, can be easily prepared by impregnating samples with 
epoxy, curing, and then cutting and polishing the samples to the desired thickness. Numerous 
commercial companies also offer inexpensive sectioning services, removing the limitations of 
experience or facilities. Further guidance and extensive details on sample preparation for SEM 
imaging can be found in several existing texts (Echlin 2011).

Scanning electron microscopes, now widely available, use an electron beam to capture 
electron-sample interactions. Most SEM instruments are also equipped with a backscattered 
electron (BSE) detector. In this mode, the degree of backscatter is proportional to the mean 
atomic number, producing an image with varying grayscale intensities (Krinsley et al. 2005). 
Before imaging, polished samples are typically coated with a thin layer of conductive material 
such as carbon or gold using an ion beam sputterer to prevent surface charging when imaging. 
This is unnecessary if the instrument is operated in environmental mode or under low vacuum. 
Pores are easily distinguishable in SEM BSE images of most geologic samples in which the 
pore space shows a signifi cant contrast with the minerals.
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Benchtop or synchrotron CT images can provide a three-dimensional depiction of a 
coherent geologic sample. In this method, a series of radiographs or projections are collected 
over a range of angles (Cnudde and Boone 2013; Wildenschild and Sheppard 2013) and a 3-D 
image. Several variations in image acquisition as well as complexities in image reconstruction 
exist and are covered in more detail in existing reviews (Wildenschild and Sheppard 2013; 
Noiriel 2015, this volume). In X-ray CT imaging, voxel attenuation is proportional to the 
energy of incident X-rays, material density, and atomic number (Cnudde and Boone 2013; 
Wildenschild and Sheppard 2013). The contrast in attenuation allows pores to be distinguished 
from grains, although varying degrees of phase retrieval may be required to make the approach 
fully quantitative (Wildenschild and Sheppard 2013).

Micron-scale resolution is possible with both SEM and microCT imaging, but this 
resolution is not suffi cient to capture the abundant sub-micron-scale pores in carbonates and 
shales. FIB-SEM imaging, however, can be used to characterize nanoscale porosity (Curtis 
et al. 2012; Landrot et al. 2012). Using FIB-SEM, high-resolution (nm) 3-D images are 
developed from a series of 2-D SEM images reconstructed to a 3-D volume. Before imaging, 
a trench is milled in front of the area of interest using the ion beam. A SEM image is then 
captured before the ion beam is used to mill away a small layer from the sample. This sequence 
of image capturing and milling is cycled, generating a series of 2-D images. Given the close 
spacing of the slices, these 2-D images can be reconstructed into a 3-D volume (Curtis et 
al. 2012; Landrot et al. 2012). Small angle neutron scattering or SANS can also be used to 
investigate nanoscale pore distributions and processes, but it is a statistical rather than mapping 
technique and is not discussed further here, although interested readers can fi nd discussion in 
other articles (Anovitz and Cole 2015, this volume; Navarre-Sitchler et al. 2015, this volume).

The porosity in SEM, X-ray CT, and FIB-SEM images can be determined by computing 
the ratio of pore pixels or voxels to total pixels or voxels in the 2-D or 3-D image. This 
fi rst requires segmentation of pore and grain pixels/voxels. There are a variety of existing 
segmentation techniques that have been used with varying success in the literature. In general, 
the pore–grain threshold occurs at a minimum in the histogram of grayscale intensities 
between the individual intensity distributions for pores and grains (Peters 2009). The choice of 
thresholding technique should be carefully made so as to be optimal for the sample of interest, 
as further discussed below. In addition, some samples will require extensive pre-segmentation 
fi ltering and even manual correction to remove image artifacts. Once the segmented image is 
produced, pore and grain pixels can be easily summed using commercially available image 
processing software or using individually developed computer programs.

While porosities can be determined from either 2-D or 3-D images, a suffi cient number 
of images are required in order to ensure that the volume used is representative of the sample, 
thus obtaining reliable porosity, mineral volume fractions, and mineral surface areas. The 
representativeness of the area or volume can be determined by computing the porosity on 
smaller volumes subsampled from the original image. As the sampled volume is increased, the 
computed porosity should approach a uniform value as a representative elementary volume 
(REV) is reached.

Mineral volumes

Despite recent efforts based on 3-D imaging (Mutina and Koroteev 2012), mineral volume 
fractions in mineralogically complex systems can be reliably determined only from 2-D SEM 
imaging. Where only a single mineral is present, as in the study by Noiriel et al. (2012), 
or where there is a signifi cant contrast in density between the minerals present, 3-D X-ray 
synchrotron mapping may be able to provide quantitative determinations of mineral volumes. 
Mineral volume determination at the microscopic scale is possible on SEMs equipped with 
Energy-Dispersive X-ray Spectroscopy (EDS or EDX) capabilities. The 2-D BSE imaging 
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approach described above makes it possible to distinguish between quartz, clay, and other 
reactive minerals (Peters 2009) with a few hundreds of nm per pixel length resolution. EDX 
imaging further allows for mineral identifi cation by determining the elements present at the 
microscopic scale. Two-D elemental maps can be captured and processed to determine the 
mineral volume percentages within each pixel (Landrot et al. 2012). Processing of EDX signals 
can be carried out with commercial software, such as QEMSCAN, or though customized 
thresholding and processing codes such as those presented in Landrot et al. (2012). These 
methods couple information on BSE intensities with elemental intensities so as to identify 
individual minerals. In either method, knowledge of the bulk mineralogy is needed to aid 
in mineral characterization, as many minerals contain similar elemental compositions and 
BSE intensities. This can be obtained from X-ray Diffraction (XRD) or X-ray Fluorescence 
(XRF) on bulk samples. Identifi cation of minerals can be challenging in highly heterogeneous 
samples even when commercial software like QEMSCAN is used. In addition, grain edge 
artifacts at grain–epoxy boundaries can alter BSE intensities (Dilks and Graham 1985), 
potentially causing misidentifi cation of minerals at grain boundaries.

Following mineral segmentation, computation of mineral volume fractions can be carried 
out by counting the number of pixels corresponding to each mineral and dividing by the total 
grain pixels. An additional advantage of determining mineral volumes from imaging is the 
ability to assess explicitly the accessibility of minerals to reactive fl uids if the porosity is 
imaged as well, and if the imaging is at suffi ciently high resolution that the connectivity of 
the pore network can be quantifi ed. As observed in recent studies (Peters 2009; Landrot et al. 
2012), mineral abundance alone may not always accurately refl ect mineral accessibility and 
pore connectivity. At least in continuum models, it is typically more accurate to discretize 
minerals based on pore accessibility fractions rather than based on total volume fractions. 
Mineral accessibilities can be computed by fi rst identifying the grain-pore boundary and then 
by counting the number of associated pixels for each mineral that are present at the interface, 
or adjacent to the pore space. Recent studies have also considered the connectivity of the pore 
space as well, since this is a primary control on the transport of ions to and from reactive 
surfaces (Navarre-Sitchler et al. 2009; Landrot et al. 2012).

Mineral surface area

There are several complexities and intricacies involved in obtaining and interpreting 
mineral surface area, a full review of which is beyond the scope of this chapter. Instead, we 
will briefl y give a few examples of ways to interpret surface area from 2-D and 3-D images. 
It should be noted that it is uncertain what the appropriate mineral surface areas are for 
reactive transport modeling of porous media. A range of surface area estimates have been used 
without evaluation of their impact or success. This includes liberally interchanging geometric 
surface area (GSA), specifi c surface area (SSA), and reactive surface area (RSA). Mineral 
GSA typically refers to a surface area computed from an average grain size and assuming 
a particular geometric grain shape, typically perfectly smooth spheres (White et al. 2005; 
Alemu et al. 2011). Mineral SSA refers to the total or rough surface area per gram mineral, 
often measured via the Brunauer, Emmett, Teller (BET) analysis (Brunauer et al. 1938). RSA 
accounts (or attempts to account) for the distribution of reactive sites on a mineral surface and 
is usually estimated by applying a scaling factor of one to three orders of magnitude to SSA or 
GSA (Zerai et al. 2006), although the basis for applying this factor is not clear.

Geometric, specifi c, and reactive mineral surface areas can be approximated from 2-D and 
3-D images using a variety of approaches. Geometric surface areas can be approximated from 
the grain sizes observed in 2-D or 3-D images assuming typical grain geometry and either 
an average grain size or range of grain sizes and corresponding surface areas. An alternative 
approach is to assume mineral-specifi c geometries and use image-observed grain dimensions 
to compute surface areas based on the ideal geometries for each mineral (Bolourinejad et al. 
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2014). This approach is somewhat limited as real minerals often deviate from ideal geometries 
or do not have perfectly smooth surfaces (Bolourinejad et al. 2014). It should also be noted that 
these 2-D approaches additionally require bias correction (Weibel 1979; Crandell et al. 2012).

Specifi c surface areas that refl ect surface roughness can be estimated from GSA 
determinations by applying a roughness factor, although the choice of a factor is diffi cult to 
justify and only an average at best (Zerai et al. 2006). Alternatively, the BET surface area can 
be measured in the laboratory and distributed among minerals as identifi ed in 2-D images. In 
3-D images, specifi c surface areas can be successfully computed by creating a triangulated or 
polygonized surface mesh, such as through the marching cubes algorithm (Lorensen and Cline 
1987; Landrot et al. 2012), then summing the area of the polygons. This is necessary as it has 
been shown that simply counting surface voxel faces in 3-D images overestimates surface area, 
as is explained in the review by Wildenschild and Sheppard (2013). This approach can be used 
to compute surface areas from both FIB-SEM images and X-ray CT images.

Diffusivity

 Diffusivity from bench-top experiments. Diffusivity within homogeneous porous samples 
may be determined experimentally with a range of techniques, some of which do not require 
pore-scale imaging. The most common experimental techniques are based on a diffusion cell 
in which one end of the cell is held at a constant concentration (effectively a Dirichlet or fi xed 
boundary condition), while a reservoir on the other side of the diffusion cell is monitored for 
solute breakthrough, either under transient (e.g., where the reservoir is stagnant) or steady-state 
conditions (where the reservoir is subject to fl ow). For example, Figure 1 shows a schematic 
for an experimental setup that has been used to determine ion diffusivity in bentonite clay 
(Tachi and Yotsuji 2014).

 Another possible experimental approach for porous medium samples relies on chemical 
mapping of the diffusion profi le. For example, Navarre-Sitchler et al. (2009) used micro-X-ray 
synchrotron mapping of bromide fl uorescence (XRF) to determine the diffusivity of samples 
of unweathered and weathered basaltic andesite. An effective, upscaled diffusion coeffi cient 

 Figure 1. A) Example of a through diffusion cell setup: (a) inlet reservoir, (b) peristaltic pump, (c) through-
diffusion cell, and (d) outlet reservoir. Arrow heads indicate the circulation of water from the reservoir to 
the fi lter in order to homogenize the inlet and outlet solutions compositions. B) Plot of concentrations in 
inlet and outlet reservoirs versus time. [Reproduced from Tachi Y, Yotsuji K (2014) Diffusion and sorption 
of Cs+, Na+, I− and HTO in compacted sodium montmorillonite as a function of porewater salinity: Inte-
grated sorption and diffusion model. Geochimica et Cosmochimica Acta, Vol. 132, p. 75-93, Figs. 1 and 3, 
with permission from Elsevier.]
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was determined for the porous andesite by fi tting the profi le with a numerical solution of the 
diffusion equation
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where  *
iD is the diffusion coeffi cient for species i in porous media that incorporates the effects 

of tortuosity, Ci is the tracer concentration,  is the divergence operator,  is the porosity, and 
t is time (Steefel et al. 2015). For example, a XRF map of a sample of weathered basalt from 
a Costa Rican chronosequence shows the distribution of bromide tracer (blue) after 7 days 
resulting from diffusion from left to right, as shown in Figure 2 (Navarre-Sitchler et al. 2009). 
Navarre-Sitchler et al. (2009) took the additional step of comparing these results to estimates 
of the diffusivity from pore-network modeling (see discussion below).

 Diffusivity from numerical experiments. Experiments and/or diffusion profi le mapping 
work well for determining diffusivity where the properties of the porous material are largely 
homogeneous, since in this case a single parameter value can be fi tted to the data. In some cases, 
it may also be possible to estimate diffusivities for heterogeneous samples if the distribution of 
properties (e.g., grain size) is known, although the likelihood of a non-unique fi t increases with 
the number of different properties in a sample. Alternatively, if the distribution of properties 
is unknown, it is possible to estimate diffusivity even in highly heterogeneous samples using 
numerical modeling based on 2-D or 3-D pore structure characterization. Navarre-Sitchler 
et al. (2009) made use of X-ray synchrotron microtomography to map the pore structure of 
samples of weathered basalt similar to that shown in Figure 2. Using a simple implementation 
of thresholding to map basalt versus pores, they were able to delineate chemical weathering 
related macroporous zones (> 4.4 m voxel resolution) that were connected in 3-D. Navarre-
Sitchler et al. (2009) then carried out numerical tracer diffusion experiments in 3-D cubes of 
weathered basalt by assuming a low diffusivity of 1.75 × 10-14 m2 s-1 for the largely unconnected 
pore structure of unaltered basalt and a free ion diffusivity of 10-9 m2 s-1 (corresponding to a 
tortuosity of 1.0) for connected pores that can be fully resolved with the 4.4 m discretization. 
Implemented in this way, the numerical tracer diffusion simulations with the code CrunchFlow 
are similar to what could be done with a pore network model. A 2-D slice through the 
skeletonized pore structure of one of the weathered zones is shown in Figure 3A (basalt in 
blue, pores in red). Results of the numerical tracer experiment are shown in Figure 3B, with 
diffusion of the tracer from the bottom of the Figure 3B towards the top. Note that in these 
3-D tracer diffusion simulations, only two distinct tortuosities (or diffusion coeffi cients) are 

Figure 2. Bromide tracer (blue) diffusion profi le after 7 days based on XRF mapping at the Advanced 
Light Source, Lawrence Berkeley National Laboratory. Diffusion is from left to right. See Navarre-Sitchler 
et al. (2009) for discussion of simulations.
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used and they are based on the segmented 3-D porosity map of the weathered sample. The 
upscaled effective diffusion coeffi cient, in contrast, is determined by fi tting a 1-D profi le to the 
3-D simulation results. The diffusion of the bromide tracer was assumed to follow a modifi ed 
Archie’s Law model that incorporates a critical porosity threshold value of 9%, below which 
the porosity is considered to be largely unconnected:

 2

e p 0 e ,D D D   (2)

w here Dp is the diffusivity in the unweathered parent basalt, D0 is the diffusion coeffi cient in 
pure water, and De is the effective diffusion coeffi cient in porous media and where the effective 
porosity, e, is defi ned as:
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;
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The  parameter a in Equation (3) is taken as 1.3 while the parameter  is assumed to be 1.0 for 
3-D volumes measuring 220 m on a side (Navarre-Sitchler et al. 2009), while T refers to the 
total porosity as mapped with the X-ray synchrotron microtomography with a 4.4 m voxel 
resolution, and c is the critical porosity estimated as 9% based on the same data.

A summary of the 3-D tracer diffusion simulation results for the Costa Rican basalts are 
given in Table 1. Samples with less than 10% porosity are essentially unweathered. Note that 
the results are to some extent dependent on sample size, and also on the porosity of the volume 
considered as expected from Equation (2). The results of the tracer diffusion simulations agree 
broadly with the laboratory tracer diffusion experiments using bromide (Fig. 4).

Using numerical modeling based on pore-scale imaging for the purposes of estimating 
diffusivity offers practical advantages when the material of interest within a sample is too small 
to easily investigate with laboratory tracer experiments. As an example, consider the chlorite-
fi lled pores within the Lower Tuscaloosa Formation that hosts the Cranfi eld CO2 sequestration 
site investigated by Landrot et al. 2012. One such pore of approximately 2 m diameter imaged 
with scanning electron microscopy (SEM) is shown in Figure 5A. The Figure shows a quartz 
grain on the right side partly milled with focused ion beam techniques, while Figure 5B shows 

Figure 3. A) Segmented X-ray synchrotron microtomographic data collected at the Advanced Light Source 
at Lawrence Berkeley National Laboratory with a voxel resolution of 4.4 m. Macropores developed as 
a result of chemical weathering in the basalt and are connected primarily in the third dimension (into the 
page), with red indicating pores, blue indicating basalt. B) Tracer diffusion simulation results using the 
pore structure shown in Figure 3A. Results are shown after 7 days of diffusion of the tracer from bottom to 
top. Simulation assumed a Dirichlet boundary condition at the bottom with a fi xed tracer concentration of 
0.01. See Navarre-Sitchler et al. (2009) for description of experiments.
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Table 1. Results of fi tting of tracer distribution from 3-D simulations with a 1-D diffusion model.

Sample size
 (mm3)

De 

(m2 s-1)
% Porosity

1.38 1.2 × 10-14 3

1.38 1.0 × 10-12 14

0.17 3.7 × 10-15 2

0.17 1.7 × 10-12 10

0.17 6.1 × 10-12 14

0.17 1.9 × 10-11 21

0.17 4.8 × 10-11 30

0.17 7.1 × 10-11 33

Figure 4. Comparison of results from laboratory and numerical (simulated) diffusion experiments. A) The 
XRF image of Br concentrations measured in basalt samples after 7 days (high concentration in white, 
low concentration in darker shades). B) Contour plot of simulated Br (tracer) distribution after 7 days in the 
same sample based on pore structure determined with X-ray synchrotron microtomography. C) 1-D effective 
diffusion coeffi cient fi t to the 3-D data. [Reproduced from Navarre-Sitchler A, Steefel CI, Yang L, Tomutsa 
L, Brantley SL (2009) The evolution of dissolution patterns: Permeability change due to coupled fl ow and 
reaction. In: Chemical Modeling of Aqueous Systems II. Vol 416. Melchior D, Bassett RL (eds)American 
Chemical Society, Washington, p 212–225, Fig. 9 with permission from the American Geophysical Union.]

Figure 5. A) FIB-SEM excavation of a single quartz grain (right side of image) and nano-crystalline chlo-
rite fi lling a pore (left side of image). B) 3-D reconstruction of chlorite and associate nanopore structure 
based on FIB-SEM results. [Reproduced from Landrot G, Ajo-Franklin J, Yang L, Cabrini S, Steefel CI 
(2012) Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineraliza-
tion. Chemical Geology, Vol. 318–319, p. 113–125, Fig. 7, with permission from Elsevier.]
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the nano-crystalline chlorite as reconstructed in 3-D with the techniques described above. 
Carrying out a laboratory tracer experiment on such a small zone would be quite diffi cult, but 
determining an approximate upscaled diffusion coeffi cient is relatively simple using a true pore-
scale model (Molins 2015, this volume), or the approach as described in Figures 3 and 4. As in 
the Costa Rican basalts described above, the Tuscaloosa Formation sandstone is divided into 
pores and chlorite mineral and these are represented directly in the pore-scale model using the 
same grid resolution as the image resolution (14 nm). A non-reactive tracer with a concentration 
of 0.01 M is released from the left hand side of the cube (Dirichlet boundary) and allowed to 
diffuse to the right. All other boundaries are treated as no-fl ux. Based on the average diffusion 
profi le, one can estimate an upscaled, effective diffusion coeffi cient of 7 × 10-12 m2/s (Fig. 6). 
The upscaled diffusion coeffi cient can then be used to describe diffusivity in the chlorite-rich 
zones within micro-continuum representations, as described more fully below.

Permeability

Imaging methods have been increasingly used as the basis for the prediction of 
permeability (Caubit et al. 2009; Algive et al. 2012; Beckingham et al. 2013). In addition to 
empirical relationships such as the Kozeny–Carmen equations that compute permeability from 
experimental or image-computed porosity (Kozeny et al. 1927; Carman 1939), permeability 
can also be estimated from pore networks extracted from 2-D and 3-D images. Pore and pore-
throat size distributions as well as connectivities are needed to recreate a representative pore 
network. A suite of different approaches have been used to characterize pore and pore-throat 
size distributions from 2-D and 3-D images. This includes, for example, multiple point statistics 
(Okabe and Blunt 2004), image erosion-dilation (Crandell et al. 2012), maximum inscribed 
spheres (Baldwin et al. 1996), and watershed segmentation (Beucher and Lantuéjoul 1979; Silin 
and Patzek 2003). It should be noted that some of these 2-D methods require bias correction 
(Crandell et al. 2012) and may not be able to determine pore connectivities without relying on 
information from 3-D images (Beckingham et al. 2013), or determined by some other means.

From these statistical distributions, simple pore network models can be created and used 
to compute continuum-scale permeability. In these models, a series of pores are defi ned on a 
regular cubic lattice and connected by pore throats. These statistical distributions of pore sizes 
also provide information on pore connectivity for the models. Fixed fl uid pressures are then 
applied at the inlet and outlet (Beckingham et al. 2013). Using Poiseuille’s law to describe 

Figure 6. A) Simulated 2-D slice of tracer concentration from a 3-D cube of chlorite and pores from the 
Lower Tuscaloosa Formation at the Cranfi eld CO2 sequestration site, which was characterized with FIB-
SEM (Landrot et al. 2012). The code CrunchFlow (Steefel et al. 2015) is used to carry out a 3-D tracer 
diffusion simulation, with release of the tracer at the left boundary at a concentration of 0.01 M. B) Fit of 
1-D diffusion profi le assuming a single homogeneous diffusivity of 7 × 10-12 m2/s (line) versus concentra-
tion from 3-D simulation.
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pore throat conductance, and assuming an incompressible fl uid, the pressure in each node can 
be determined (Li et al. 2006). At the continuum scale, Darcy’s law can then be applied to 
solve for the permeability (Li et al. 2006). While this method has been shown to successfully 
predict permeability (Beckingham et al. 2013), image resolution and segmentation effects can 
affect predictions, as discussed further below.

 Estimating permeability using pore-scale numerical simulation. As an alternative to 
these statistical methods, pore network structures have also been directly extracted and simulated 
from 3-D images. Direct 3-D network extraction from 3-D images has been carried out using a 
variety of techniques, such as skeletonization based on the medial axis transform as in seminal 
work by Lindquist and co-workers (Lindquist et al. 1996). Direct modeling using Lattice 
Boltzmann based on the image-derived pore structure is often used to estimate fl ow and network 
properties (Blunt et al. 2013). The 3-D imaging could be X-ray synchrotron microtomography, 
or for potentially higher resolution, FIB-SEM techniques. For example, Oostrom and co-
workers (Oostrom et al. 2014) determined permeability for micro-models based on the pressure 
drop across the model for a range of imposed fl ow rates using Darcy’s Law. While the micro-
models investigated by Oostrom et al. (2014) were based on idealized geometries, the approach 
can be generalized to more complex natural pore structures, for example a capillary tube fi lled 
with crushed calcite grains (Molins et al. 2014), or in 3-D to fractured shales imaged with 
high resolution FIB-SEM techniques (Trebotich and Graves 2015). In Molins et al. (2014) 
and in Trebotich and Graves (2015), the pore structure is fully resolved and the Navier–Stokes 
equation is solved for the domain, in the case of the fractured shale (Fig. 7) at a resolution 
of 48 nm. The approach in order to determine an upscaled permeability in the case of multi-
dimensional heterogeneous samples requires an averaging technique for the pressure, since 
there is no single pressure value at the downstream side of the volume.

Imaging issues impacting parameter estimation

 Image segmentation. To date, a variety of segmentation and interpretation methods have 
been applied to 2-D and 3-D images with varying success (Sezgin and Sankur 2004; Dong and 
Blunt 2009; Iassonov et al. 2009; Peters 2009; Porter and Wildenschild 2010; Bhattad et al. 
2011; Wildenschild and Sheppard 2013). Despite the range of automated thresholding methods, 
there remains a lack of consistency in results even on images of the same sample (Wildenschild 
and Sheppard 2013). Typically, operator input remains necessary (Cnudde and Boone 2013).

Several image artifacts and issues continue to make image segmentation challenging. 
One complexity that is particularly common in 3-D images is partial volume or edge effects 

Figure 7. Steady-state fl ow through fractured shale based 
on Navier–Stokes equation. The surface plot shows the in-
terface between pores and solid (shale). The surface is col-
ored according to velocity magnitude in the pore, with blue 
representing lower velocities, shades of green, yellow, and 
red representing higher velocities. Resolution 48.4 nm with 
1920 × 1600 × 640 total grid cells. Original pore structure 
obtained from FIB-SEM mapping, which indicates a bulk 
porosity of 18%. [Reproduced from Trebotich D, Graves 
DT (2015) An adaptive fi nite volume method for the incom-
pressible Navier–Stokes equations in complex geometries 
Communications in Applied Mathematics and Computa-
tional Science, Vol. 10(1), p. 43–82, Fig. 13, with permis-
sion from Mathematical Sciences Publishers.]
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that occur, for example, when a single voxel contains multiple substances or straddles a 
pore-mineral boundary. In these cases, the corresponding composite voxel is assigned an 
intermediate X-ray attenuation value that refl ects some combinations of the neighboring voxel 
compositions (Ketcham and Carlson 2001). Additional diffi culties result from image artifacts, 
such as noise, surface charging, and ring artifacts. Also, variations in intensities across images 
are common and occur in SEM images when surfaces are not completely fl at, or as a result 
of beam hardening in X-ray CT imaging (Wildenschild and Sheppard 2013). Filtering of 
some of these artifacts can be achieved through relatively simple approaches involving noise 
removal by pixel fl ipping of isolated misidentifi ed phases Peters (2009). Others artifacts are 
not easily correctable and require additional more complex fi ltering processes (Blunt et al. 
2013; Cnudde and Boone 2013; Wildenschild and Sheppard 2013) or even manual image 
correction (Crandell et al. 2012) before or after thresholding to correctly segment images. 
Given the range and extent of segmentation methods and pre-processing procedures, a detailed 
review is not included here, but the interested reader is referred to other reviews on the subject 
(Cnudde and Boone 2013; Wildenschild and Sheppard 2013).

Imprecision and errors in image segmentation can have several impacts on parameter 
estimation. Small-scale features may be misinterpreted as noise and thus erroneously removed 
pre- or post-thresholding, altering the total porosity, mineral volume fractions, and mineral 
surface areas. This may also impact the estimation of permeability if these features are removed 
in pore throats and result in erroneously increasing pore throat size(s). A recent review in 
Iassonov et al. (2009) evaluated porosities determined from a range of segmentation methods 
applied to 3-D X-ray CT images of porous media. They found large discrepancies of one 
to over two orders of magnitude in porosity resulting from different segmentation methods, 
even on simple samples such as glass beads (Iassonov et al. 2009). Given that this initial 
segmentation step is needed to defi ne the grain-pore boundaries, segmentation error directly 
impacts analysis of pore and pore-throat sizes, and thus the permeability that is predicted. 
Similar pore–grain segmentation methods have been used to process BSE and EDS images 
to identify minerals (Peters 2009; Landrot et al. 2012). It is thus likely that similar potentially 
signifi cant errors may result in the case of mineral volumes and surface areas as well.

Care should be taken to reduce segmentation error whenever possible. This can be achieved 
by evaluating the appropriate segmentation method for each sample. In some cases, different 
images from the same sample may require different segmentation procedures (Wildenschild 
and Sheppard 2013). Additionally, image determined parameters should be compared with 
measured parameters whenever possible. Successful segmentation should produce porosity 
estimates that agree with laboratory-measured values, taking into account the fraction of 
porosity that is accounted for in each method. Similarly, image determined mineral volume 
fractions should agree with laboratory-measured mineralogy from XRD or XRF, keeping in 
mind that the sensitivity of the instruments may not be suffi cient to characterize the minor 
phases that can be captured in high-resolution imaging.

Image resolution

High resolution images typically require small sample sizes. There are several methods 
that have been used with some success to increase the sample size of high-resolution images. 
In one approach that is often used with 2-D SEM images, a series of overlapping high-
resolution images are captured and stitched together into a larger, high-resolution, composite 
image (Crandell et al. 2012). Similar mosaic techniques have been used with 3-D images as 
well (Mokso et al. 2012). In addition, alternative reconstruction and transform approaches 
have been successful in some cases in increasing the sample size of high resolution images 
(Defrise et al. 2006; Cnudde and Boone 2013). The use of multi-scale imaging that relies on 
a range of imaging techniques or resolutions has recently been gaining interest as well. These 
include, for example, combining X-ray CT images at different resolutions or fusing X-ray CT 
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images with FIB-SEM and SEM BSE images (Sok et al. 2010; Landrot et al. 2012). These 
studies used high-resolution FIB-SEM imaging to evaluate the porosity and surface area of 
clay minerals that could not be characterized with the lower resolution pore-scale imaging 
approaches (Sok et al. 2010; Landrot et al. 2012).

Regardless of the approach, features smaller than the voxel or pixel size cannot be 
distinguished with the approaches discussed here. These features, however, may be present 
via the partial volume effect (Cnudde and Boone 2013). In CT imaging for example, this 
occurs where a single voxel contains more than one phase, with the result that an intermediate 
attenuation value is assigned to the voxel. This results in image imprecision, particularly at 
interfaces between materials (Cnudde and Boone 2013), and can introduce potentially large 
errors when small features and pores are characterized. Imprecision in small-scale features 
may have little impact on overall porosity and mineral volume fractions, but large impacts 
on other image-estimated parameters. For example, there could be a large effect on the 
determination of mineral surface areas given that small-scale features often account for a large 
portion of the surface area. This is in addition to the impact that lower image resolutions 
have on correctly capturing surface roughness and thus surface area. Misclassifying small-
scale features in either 2-D or 3-D images also introduces error in permeability and diffusivity 
predictions when using image-informed network models (Caubit et al. 2009; Beckingham et 
al. 2013). Accurate permeability predictions may still be possible from models informed by 
lower resolution images in the case where smaller pores (below the resolution of the technique) 
do not have a large impact on permeability and fl ow (e.g., Blunt et al. 2013).

MICRO-CONTINUUM MODELING APPROACHES

If the imaging methods are suffi ciently high resolution that individual grains and pores 
and most importantly their interfaces can be resolved, then the 2-D and 3-D maps can be 
used directly in high resolution pore-scale modeling (e.g., Molins et al. 2014). However, this 
requires access to pore-scale reactive transport modeling software (still a specialized fi eld) 
and to high performance computer hardware. Thus it may not be practical for all researchers 
approach, even if the full pore-scale approach is arguably the most rigorous. If the domain size 
is too large and/or spatial resolution too low, or if a true pore-scale code is not available, then 
micro-continuum modeling is another possibility. The data can be used at the spatial resolution 
at which is collected, or volume averaged to a coarser discretization so as to handle a larger 
domain, or simply to make the simulations computationally feasible. Scalar quantities like the 
porosity and mineral volume fractions can be volume averaged directly, vectorial quantities 
like permeability or diffusivity are more likely scale-dependent and require special treatment 
(see discussion below).

Volume averaging of porosity and mineral volume fractions

Given an initial map of porosity and mineral volume fractions at some resolution, it 
is a relatively simple procedure to calculate equivalent quantities at coarser resolutions by 
using volume averaging. However, these scalar quantities are infl uenced by the connectivity 
and thus the transport properties of the medium. If the connectivity and the accessibility of 
reactive surface area are scale-dependent, then volume averaging as an upscaling procedure 
may introduce errors into the simulations. How accurate the volume-averaged quantities are 
at various scales is a future research area, one that has been neglected to date perhaps because 
researchers interested in upscaling in porous media have focused primarily on the physical 
properties, or because the routine use of high-resolution chemical and mineralogical mapping 
is still in its infancy.



230 Steefel, Beckingham & Landrot

If pores and individual mineral grains are fully resolved (i.e., no voxel includes more 
than a single mineral, or a mixture of pore space and minerals), then producing coarser 
representations of the medium consists of adding up the various image voxels corresponding 
to porosity and the individual minerals. The percentage of porosity per unit volume porous 
medium, for example, is just the number of voxels made up completely of pores divided by the 
total number of voxels in the volume of interest. The volume procedure, however, is equally 
straightforward where individual voxels consist of a mix of either different minerals or minerals 
and porosity, since the porosity (connected or unconnected) will be just the weighted average 
of the porosity in the individual voxels. An example of volume averaging is given by choosing 
an image of the porosity and mineral distribution from the Lower Tuscaloosa Formation at the 
Cranfi eld CO2 sequestration site with a resolution of 331 nm (Fig. 8), which is adequate to 
resolve all but the nano-crystalline chlorite-fi lled pores (Landrot et al. 2012). With suffi cient 
computational resources (software and hardware), it should be possible to simulate the pore-
scale geochemical processes at the original resolution of 4 m, that is, use the information 
on porosity (accessible and inaccessible) and mineralogy shown in Figure 8 directly. In order 
to make the reactive transport simulations tractable for our purposes, however, we assume a 
256 by 256 2-D section with 16-m grid resolution that produces a section measuring 4.1 mm 
by 4.1 mm. As an example, volume averaging of porosity and mineral abundance produces 
data like that shown in Table 2, which represents a small portion of the Lower Tuscaloosa 
Formation sandstone sample investigated in Landrot et al. (2012). The volume averaging 
to 16 m2 produces a porosity map (Fig. 9A) and mineral abundances for quartz, chlorite 
(chamosite), and illite as shown in Figures 9B, 9C, and 9D respectively. These maps are used 
as initial conditions in the reactive transport modeling of the 4.1 mm by 4.1 mm 2-D section 
discussed below.

Table 2. Example of volume averaging of porosity and mineral percentages from Lower Tuscaloosa Formation 
(Cranfi eld) sandstone. Volume averaging to 16 m is based on an original image resolution of 4 m (Landrot 
et al. 2012). Each pixel in the table corresponds to a 2-D section measuring 16 m2.
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 Micro-continuum reactive transport simulations of fractured tuff. The fi rst micro-
continuum reactive transport modeling described in the literature that we are aware of was 
presented by Glassley and co-workers (Glassley et al. 2002). This mysteriously unrecognized 
and largely uncited publication was the fi rst to make use of mineralogical and chemical data 
collected with modern synchrotron techniques at the micro-scale and then used as initial 
conditions for high resolution reactive transport simulations. This study developed spatially 
distributed representations of porosity and mineralogy based on a combination of optical 
mineralogy and -XRF mapping at a resolution of approximately 1 m in 2-D. The rock 
samples consisted of fractured tuffaceous rock from Yucca Mountain, Nevada. A sample 
area of 106 m2 was mapped in detail and the resulting element and porosity maps were 
digitized, thus creating a domain decomposed into 12,208 grid cells that were 8.77 m on 

Figure 8. Connected porosity map-
ping in a 29 mm2 region of the Lower 
Tuscaloosa Formation sandstone 
(Cranfi eld), considering the nanopo-
rosity within chlorite as 100% con-
nected. The porosity is mapped with 
a 331 nm/pixel resolution. The white 
color represents the connected pore 
network that starts from the edges 
of the image and propagates inward 
through the map, and the turquoise-
blue color represents the chlorite frac-
tion that is linked to the connected 
pore network measured in the 29 mm2 
region. [Reproduced from Landrot 
G, Ajo-Franklin J, Yang L, Cabrini 
S, Steefel CI (2012) Measurement of 
accessible reactive surface area in a 
sandstone, with application to CO2 
mineralization. Chemical Geology, 
Vol. 318–319, p. 113–125, Fig. 8, with 
permission from Elsevier.]

Figure 9. A: Poros-
ity distribution in 2-D 
section of the Lower 
Tuscaloosa Formation 
sandstone (Cranfi eld 
CO2 sequestration 
site) volume averaged 
from 4 m2 to 16 m2. 
B: Volume fraction 
of quartz. C: Volume 
fraction of chlorite 
(chamosite). D: Vol-
ume fraction of illite.
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a side (Fig. 10). A bulk porosity of about 6% was estimated based on averaging of the entire 
sample. Simulations were conducted in which a dilute fl uid enters the discretized porous 
medium at two different fl ow rates of 0.1 and 1.0 m3 m-2 yr-1, assumed to be uniform across 
the domain. The fl uid is reacted with the rock at 90 ºC. Simulations involving the slower fl ow 
rate, in which the fl uid residence times is approximately 3.65 days, provide fl uid composition 
results at the downstream end that are very similar to those obtained from homogeneous 
mineral distribution representations. At the higher fl ow rate of 1.0 m3 m-2 yr-1 (residence time of 
approximately 8.76 hours), however, the fl uid composition differs between the heterogeneous 
and homogeneous cases along the entire length of the fl ow path. The authors concluded that the 
simulation results demonstrate that the fl uid composition characteristics in the homogeneous 
and discrete mineral representations will be similar only when the bulk average contact times 
for the individual mineral phases along the fl ow paths are approximately equivalent (within a 
few percent).

 Micro-continuum reactive transport simulations in Lower Tuscaloosa Formation 
(Cranfi eld) sandstone. The Cranfi eld Oil Field in Mississippi has been used as a subsurface CO2 
injection pilot site, with super-critical CO2 injected into the lower Tuscaloosa Formation at about 
300 m depth. The Tuscaloosa Formation is a 15-m-thick heterogeneous fl uvial sandstone that was 
the subject of an experimental study by Lu and co-workers (Lu et al. 2012), who reported low 
reactivity for the sandstone in contact with CO2-infused brine. The question arises as to whether 
the low reactivity is due primarily to the limited availability of reactive surface area? This can 
be evaluated more quantitatively with the micro-continuum approach. The bulk reactivity can be 
estimated by carrying out 2-D diffusion-reaction simulations using the volume-averaged porosity 
and mineral distributions presented in Figure 9, with the left hand boundary set as a fi xed or 
Dirichlet boundary condition. This effectively makes the CO2 reservoir (5 bars, 25 ºC) infi nite. 
The simulations are carried out over the 4 mm by 4 mm domain for a period of 365 days, which 

Figure 10. Discretized mineralogy of tuff sample generated from digitized element maps. Gray regions 
represent pure silica (treated as cristobalite in the simulations), and the black regions are K-feldspar. 
The white regions map fine-grained groundmass, which was treated as inter-grown cristobalite+alkali 
feldspar+Ca-smectite+hematite. The gray sinuous band running from top to bottom of the figure is a silica-
filled fracture. Area is 1000 × 1000 m. [Reproduced from Glassley WE, Simmons AM, Kercher JR (2002) 
Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. 
Applied Geochemistry, Vol. 17, p. 699–708, Fig. 2, with permission from Elsevier.]
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is a suffi cient amount of time for the system to come to a steady state. An effective diffusion 
coeffi cient of 10-10 m2 s-1 is assumed for the domain, with the exception of zones containing 50% 
or more chlorite where the effective diffusion coeffi cient is assumed to be 7 × 10-12 in agreement 
with 1-D simulation shown in Figure 6B. No correction is made for the 3-D connectivity in the 
2-D simulations, so access to some reactive phases is likely underestimated. How to incorporate 
3-D tortuosity into 2-D modeling domains is a future research topic. In the case where the local 
porosity is zero, the diffusive fl ux will be zero because of the use of harmonic means to calculate 
properties at grid cell interfaces. Thus, unconnected porosity is automatically accounted for 
within the resolution of the discretization. Sub-grid connectivity, however, is not accounted for, 
although this should be possible with a more rigorous treatment of the data.

The spatial distribution of chlorite dissolution rates in the 2-D Tuscaloosa Sandstone section 
is shown in Figure 11. The sparse distribution of accessible chlorite certainly contributes to the 
low bulk reactivity of the material, so perhaps the observations Lu et al. (2012) of low reactivity 
are understandable. Bulk rates calculated from the micro-continuum simulations are given 
in Table 3. The rates are normalized to a cubic centimeter of Tuscaloosa Sandstone, which is 
close to the size of the rock sample used in the Lu et al. (2012) experiments. The low reaction 
rates of the lower Tuscaloosa Formation sample in contact with the CO2-infused brine is thus a 
consequence of both the low volume fractions of the reactive phases (quartz dominates) and the 
poor accessibility of some of the phases.

Multi-continuum approaches

There are many examples of soils, sediments, and rocks that are characterized by multiple 
length scales, each with its own set of physical and/or chemical properties. Probably the best 
known example is that of fractured rock. Here fl ow in the fractures is described by meter or 
larger length scales, while transport in fi ner-grained, unfractured material within the same 
volume is dominated by diffusion length scales (mm–cm). Other examples of hierarchical 

Figure 11. Spatial distribution of chlorite dissolution rates in units of mol L-1 fl uid s-1 after 365 days of 
diffusion–reaction (no fl ow) simulation. Given these results, the low reactivity of the Tuscaloosa Sandstone 
samples investigated by Lu et al. (2012) is perhaps understandable.
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porous media can be mentioned, as for example where pore or smaller scale parameters and 
processes affect larger macroscale behavior. The models used to describe these systems are 
typically referred to as multi-continuum models.

In some cases, these scales are separated in space and can be represented as discrete 
spatial zones within a fl ow or reactive transport model—an example might be a discrete 
fracture located in what is otherwise an unfractured, low permeability material. In other cases, 
however, the domains may overlap within the same representative elementary volume (REV). 
In these cases, the domains are typically represented as two or more distinct continua with their 
own set of mass balance equations and physical-chemical properties (Barenblatt et al. 1960; 
Pruess and Narisimhan 1985). Functions describing exchange between the various continua 
may be included as well. Multi-continuum models had their origin primarily in fractured rock 
systems where it has been diffi cult or impossible to represent all of the fractures discretely 
with a single representative elementary volume. The general approach was fi rst introduced by 
Barenblatt and co-workers in 1960 (Barenblatt et al. 1960) and it has since been implemented 
in various forms, including: (1) the equivalent continuum model, or ECM (Wu 2000), (2) the 
dual permeability model (DPM), dual or multi-porosity model (Warren and Root 1963), and 
(3) multiple interacting continua or MINC approach (Pruess and Narisimhan 1985; Aradóttir 
et al. 2013). Among these three commonly used approaches, the dual-continuum approach 
has been most extensively applied in different subsurface environments (Arora et al. 2011), 
perhaps because it is relatively simple compared to the other approaches and because it is 
capable of describing many natural subsurface materials. The dual-continuum approach 
considers two interacting regions, one associated with the less permeable soil or rock matrix, 
and the other characterized by fl ow and/or diffusion in macropores or discrete fractures. In 
this approach, the representative elementary volume (REV) is partitioned into sub-volumes of 
each domain such that:

REV macro micro ,V V V  (4)

where VREV refers to the total volume of the porous medium, Vmacro and Vmicro refer to the 
volume of the macro and micro (or equivalently, fracture and matrix) domains, respectively. 

Mineral
Mineral 

Concentration
(mol/cm3)

Specifi c 
Surface 

Area 
(m2/g)

Bulk 
Rate 

(mol/cm3/s)

Quartz 3.1 × 10-2 0.024 8.5 × 10-20

Chlorite 7.1 × 10-4 1.0 -1.2 × 10-17

Illite 8.1 × 10-5 1.0 -1.4 × 10-18

Kaolinite 2.3 × 10-4 1.0 -3.4 × 10-18

Smectite 1.6 × 10-4 1.0 -5.3 × 10-18

Fe-hydroxide 2.8 × 10-4 1.0 -2.9 × 10-15

Calcite 0 0.04 0

Magnesite 0 0.04 0

Amorphous Silica 0 0.024 0

Table 3. Bulk rates calculated in 2-D section of Lower Tuscaloosa Formation sandstone using porosity and 
mineral abundance distributions shown in Figure 9.  Intrinsic rates per unit surface area mineral used are 
standard literature values.  Bulk porosity = 0.13. 
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The fraction, e, of volume occupied by the macropores and micropores, then, can be described 
respectively as (Lichtner 2000)

macro micro
macro micro

REV REV

, .
V V

V V
    (5)

These relations can be easily extended to include multiple interacting domains, as in the MINC 
approach (Pruess and Narisimhan 1985). The dual or multi-domain conceptualizations can 
be distinguished by their different formulations of the governing equations of fl ow in the 
fracture domain and/or by their different approaches to establish exchange between the two 
overlapping continua (or multiple domains). Various reviews of the different multi-continuum 
approaches, including the governing equations and exchange functions, are available elsewhere 
(Berkowitz and Balberg 1992; Lichtner 2000; Šimůnek et al. 2003; MacQuarrie and Mayer 
2005; Aradóttir et al. 2013).

 Multi-continuum models applied to micro-continuum systems. While the multi-
continuum approach has been applied to various problems in which two or more domains with 
contrasting permeability and/or diffusivity are identifi able, the approach has less commonly 
been used to capture micro-continuum scale effects, for example, interactions between grain 
and pore scale processes (e.g., nm to mm scale) and the larger domain within which fl ow and 
reactive transport occurs (e.g., m scale). Perhaps the earliest contributions that considered 
interactions between microscopic and macroscopic domains via diffusion were those of 
Ortoleva and co-workers (Dewers and Ortoleva 1990; Sonnenthal and Ortoleva 1994). The 
case of diffusive exchange between a macroscopic melt and microscopic discrete crystals was 
considered by Wang (1993).

Wanner and Sonnenthal presented a three region model for kinetic Cr isotopic exchange 
(shown schematically in Fig. 12) that considered a mobile region within which advective 
fl ow occurs, an immobile region within which transport is only via diffusion, and a “mineral 
region” in which all of the reactions take place (Wanner and Sonnenthal 2013). The advantage 
of the MINC approach is that it is able to handle diffusive fl uxes, JD, between the minerals and 

Figure 12. Schematic representation of multiple-interacting continua (MINC) representation of kinetic Cr 
isotopic fractionation (Wanner and Sonnenthal 2013). By treating the mineral where the reduction occurs 
as a discrete domain, mixed diffusion–surface reaction rates can be considered. JD1 and JD2 refer to the 
fl uxes of Cr(VI) from the mobile and immobile continua to the mineral surfaces, respectively.
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both the other domains within which transport occurs, thus allowing for an explicit treatment 
of diffusive limitations to the rate (Xu 2008). Providing a surface reaction-controlled rate at 
the mineral surface in combination with the MINC approach allows one to consider a mixed 
diffusion-surface reaction control on the rate, as in the discrete model presented by Noiriel et 
al. (2012).

In a study by Aradóttir et al. (2013), the method of ‘multiple interacting continua’ (MINC) 
was applied to include microscopic rate-limiting processes operating at the grain scale within 
continuum (cm to m) scale reactive transport models of basaltic glass dissolution. In contrast 
with the nanometer-scale resolution model for glass dissolution discussed below, the approach 
taken by Aradóttir et al. (2013) allows for the use of a coarse numerical grid while capturing 
the interaction with the microscopic grains via the multi-continuum approach. The MINC 
method involves dividing the system up to ambient fluid and grains, using a specific surface 
area to describe the interface between the two (Fig. 13A). The various grains and regions 
within grains are then described by dividing them into continua separated by dividing surfaces. 
Millions of grains can thus be considered within the method without the need to explicitly 
discretize them individually. Four continua were used for describing a dissolving basaltic glass 
grain; the first one describes the ambient fluid around the grain, while the second, third and 
fourth continuum refer to a diffusive leached layer, the dissolving part of the grain and the inert 
part of the grain, respectively (Fig. 13B).

Resolution of nanoscale reaction fronts

In addition to their incorporation in MINC, micro-continuum models also have important 
application to the simulation of nanoscale reaction fronts, particularly where there has been 
interest in the long term performance of the engineered or natural materials (Grambow 
2006; Gin et al. 2013b). Unlike the multi-continuum approach in which a relatively coarse 
numerical discretization is used (that approach relies on the multiple interacting continua to 
capture microscopic behavior), very high resolution gridding is used in this section to capture 
microscopic effects.

Figure 13. A) A four-dimensional MINC interpretation of basaltic glass dissolution. The left figure 
shows a zoom-in of real grains in the simulated column, which is packed with basaltic glass grains of size 
125–250 m, yielding a porosity of 0.45. The middle figure shows a blow up of several grain clusters with-
in the column and their interpretation as four interacting continua within the MINC approach. Each grain 
cluster consists of approximately 25,000 individual grains. B) A schematic illustration of elements and 
connections in the four-dimensional MINC setup, with each column representing a different continuum. 
[Reproduced from Aradóttir ESP, Sigfússon B, Sonnenthal EL, Björnsson G, Jónsson H (2013) Dynam-
ics of basaltic glass dissolution–Capturing microscopic effects in continuum scale models. Geochimica et 
Cosmochimica Acta, Vol. 121, p. 311–327, Figs. 2 and 5 with permission from Elsevier.]
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There has been increasing interest in this topic in recent years as various characterization 
methods have dramatically improved the spatial resolution of reaction fronts that can be 
achieved. In particular, the higher resolution of the newer chemical profi ling techniques, 
which include atom probe tomography (APT), scanning transmission electron microscopy 
(STEM), energy fi ltered transmission microscopy (EFTEM) , and time-of-fl ight secondary 
ion mass spectrometry (ToF-SIMS), has called into question the long-standing model of 
glass and mineral dissolution in which diffusion and hydration lead to the selective release of 
cations from the surface-altered zone (Geisler et al. 2010; Hellmann et al. 2012, 2015; Gin et 
al. 2013a, 2015). The higher resolution techniques demonstrate convincingly that the broad 
sigmoidal profi les interpreted as inter-diffusion cation profi les are largely an effect of the low 
resolution techniques that average elemental concentrations across a broad region. The broad 
inter-diffusion profi les in glass and minerals that investigators thought they saw in the past 
had led to models for dissolution that involved selective leaching of elements from the glass 
or mineral structure. In contrast, Hellmann et al. (2015) report nm to sub-nm scale reaction 
front widths in altered borosilicate glass for all ions except for H+, the measurement of which 
they suspect to be subject to too much error for high resolution mapping. The sharp nm-scale 
fronts indicated by higher resolution profi ling, along with isotopic studies targeting the gel 
layers formed from glass corrosion (Geisler et al. 2010), have led to reinterpretation of these 
as dissolution–precipitation rather than inter-diffusion fronts (Hellmann et al. 2012, 2015). It 
should be pointed out that some high resolution studies like that on the nuclear glass altered 
for 25 years (reported by Gin et al. 2013a, see Fig. 14A) still indicate ~20-nm fronts for H+ and 
Li+, suggesting that at longer time scales, it may still be possible for the inter-diffusion fronts 
to develop, even if they are much narrower than previously thought. It is noteworthy that even 
in the case of the 25-year glass investigated by Gin et al (2013a), however, the reaction front 
for boron and sodium are narrower than the fronts for Li+ and H+, arguing that a dissolution–
precipitation mechanism c ontrols the release of B and Si (Fig. 14B).

 Analytical and numerical models for reaction fronts. A number of models for diffusion 
and reaction have been presented over the years, with noteworthy contributions by Thompson, 
Korzhinskii, and Weare (Korzhinskii 1959; Thompson 1959; Weare et al. 1976). A special 
class of analytical models have been developed for the case of inter-diffusion of cations 
applied primarily to the problem of nuclear glass corrosion (Doremus 1975; Hellmann 1997). 
Lichtner et al. (1986) presented perhaps the fi rst numerical reaction–diffusion model that 
could accommodate kinetic models for mineral (or glass) reaction (Lichtner et al. 1986). The 

Figure 14. A) High resolution atom probe tomography (APT) profi le across glass alteration front. Note 
sharper front for B and Na as compared to Li and H. B) Schematic representation of distribution of fronts 
for 25-year altered glass shown on left. [Modifi ed slightly after Gin S, Ryan JV, Schreiber DK, Neeway 
J, Cabié M (2013a) Contribution of atom-probe tomography to a better understanding of glass alteration 
mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment. Chemical 
Geology, Vol. 349, p. 99–109, Figs. 3 and 6, reproduced with permission of Elsevier.]
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fi rst comprehensive numerical study of a geological diffusion–kinetic reaction system may 
have been that presented by Steefel and Lichtner in 1994, a study that highlights some of 
the advantages of this approach over those relying on analytical solutions to the diffusion 
or diffusion-reaction system (Steefel and Lichtner 1994). The advantages of the numerical 
versus analytical models is their ability to couple multicomponent diffusion and kinetically 
controlled mineral reaction while considering aqueous and surface complexation. In addition, 
the grid-based numerical formulation allows one to consider changes in porosity, diffusivity, 
and permeability resulting from the chemical reactions.

 Numerical models for glass alteration—the GRAAL model. While numerical diffusion-
reaction models are now becoming more common, in part because their advantages in coupling 
multicomponent transport and reaction as discussed above (see, for example, Marty et al. 
2015), applications to the micro- or nanoscale are more rare. The applications to date have 
primarily been to glass corrosion, although the approaches should be applicable to mineral 
dissolution as well. A noteworthy fi rst effort in this regard are the series of papers by Frugier 
and co-workers that describe the basis for their glass corrosion model (referred to as the 
GRAAL model) and its application to the problem of glass corrosion (Frugier et al. 2008). The 
key features of glass corrosion implemented in the GRAAL (glass reactivity with allowance 
for the alteration layer) model include (Fig. 15): 

• Relatively rapid exchange and hydrolysis reactions involving the mobile glass 
constituents (alkalis, boron, etc.);

• Slower hydrolysis involving silicon, which results in the formation of an amorphous 
silica-rich layer at the glass/solution interface;

• The amorphous layer itself dissolves as long as the external solution is undersaturated 
with respect to silica;

• The amorphous layer becomes a barrier to diffusion (referred to as a Passive Reactive 
Interface, or PRI), which at steady-state becomes the rate-limiting mechanism. The PRI 
is assumed to form at the interface between the gel layer and the inter-diffusion zone and 

Figure 15. Simplifi ed diagram of predominant mechanisms accounted for in the GRAAL model for glass 
corrosion. The Passive Reactive Interface (or PRI) is interpreted to form at the interface between gel and 
the ion inter-diffusion zone (not shown) and is assumed to be the rate-limiting step in the overall glass 
corrosion process. [Reproduced from Frugier P, Gin S, Minet Y, Chave T, Bonin B, Godon N, Lartigue 
J-E, Jollivet P, Ayral A, De Windt L (2008) SON68 nuclear glass dissolution kinetics: Current state of 
knowledge and basis of the new GRAAL model. Journal of Nuclear Materials, Vol. 380, p. 8–21, Fig. 13, 
with permission from Elsevier.]
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it represents a densifi cation of a portion of the gel layer;

• Crystallization of secondary phases may occur in the broader gel layer.

The principal simplying assumptions in the GRAAL model are:

• The rate-limiting step for glass corrosion is water diffusion within the PRI;

• Water diffusion in the glass and proton/alaklin ion exchange are ignored, and;

• The reactivity of the PRI is described by its thermodynamic state relative to the leaching 
solution.

The model equations that are solved, then, include:

1. An equation describing the kinetics of dissolution of the PRI as a result of 
undersaturation with respect to the solution;

2. An equation describing the kinetics of formation of the PRI as a result of water 
diffusion;

3. An equation describing the kinetics of formation of secondary phases in the gel;

4. Mass balance for silicon, and:

5. Mass balance for boron.

 Numerical models for glass alteration—the KC model. As an alternative to the 
GRAAL model in which diffusion through the Passive Reactive Interface (PRI) is assumed 
to be rate-limiting, it is possible to develop a more general model that makes no a priori 
assumptions about the rate-limiting step in the overall glass alteration process. The Kinetic 
Micro-Continuum (KC) model that has been developed is based on the reactive transport 
software CrunchFlow (Steefel et al. 2015) and includes the following processes:

• Diffusion of water through the pristine glass and its alteration products;

• Ion exchange between water and the cations in the glass;

• Kinetically controlled hydrolysis reactions resulting in breaking of glass network bonds 
(Si, B, Al, etc.). The rate may be described by either a linear or a nonlinear transition state 
theory (TST) law with an affi nity control supplied by a specifi c phase (e.g., amorphous 
silica), or with an irreversible rate law with no affi nity control. In either case, far from 
equilibrium dependencies of the rate on other dissolved (e.g., pH, Al, silica) or sorbed 
species can be included;

• Multicomponent diffusion of ions through the glass corrosion products;

• Precipitation reactions for amorphous and/or crystalline phases of variable composition 
that are kinetically and thermodynamically controlled;

• Kinetically controlled ripening and/or densifi cation reactions that can reduce the porosity 
and/or pore connectivity (and thus the diffusivity) of the corrosion products;

• Kinetically and thermodynamically controlled formation of new crystalline phases 
(e.g., smectite, zeolite), with possible consequences for the transport properties of the 
corrosion layer;

• Flow and diffusion in the aqueous phase adjacent to the glass surface.

The KC model incorporates the possibility (unlike the requirement in the GRAAL model) 
of diffusion-limited glass corrosion by considering explicitly the kinetically-controlled 
densifi cation of either (1) a residual silica-rich glass network in which other important 
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components (e.g., the cations and network former boron) have been leached, or (2) of a newly 
precipitated silica-rich gel layer. Whether a passivating layer (i.e., defi ned as the Passivating 
Reactive Interface (PRI) by Frugier et al. 2008) forms in the model depends on the relative 
rates of (1) silica recrystallization and densifi cation, (2) leaching of the glass constituents, and 
(3) dissolution and/or recrystallization of the corrosion products.

Application to the 25-year glass alteration test. As an application of the KC model 
described above, the 25-year glass alteration experiment as described by Guittoneau and co-
workers (Guittonneau et al. 2011; Gin et al. 2013a) is simulated. The principal objective of 
the modeling is to capture the width of the various reaction zones close to the pristine glass 
surface and their relative positions as recorded by Atom Probe Tomography (APT) rather than 
to match the long term corrosion rate. We assume a pure diffusion-controlled regime and a 
constant grid spacing of 1 nm. The assumption that a continuum model applies at this spatial 
scale is a severe approximation given that pore sizes are close to this value, but the approach 
allows us to compare results with elemental profi les and avoids the additional requirement of 
a full computationally expensive and chemically simplifi ed atomistic treatment (Bourg and 
Steefel 2012).

As a boundary condition at one end of the reactor-glass specimen system, we consider a 
Dirichlet or fi xed concentration condition corresponding to the mineral water used to replenish 
periodically the experimental reactor (Guittonneau et al. 2011). The fi xed concentration 
boundary condition in 1-D is probably a good approximation to a fl ow-through or continuously 
fl ushed system. At the other end of the 1-D system, we assume a no-fl ux condition, which is 
reasonable as long as the corrosion front does not fully penetrate the glass specimen. Within 
the fi rst 50 nm of the reaction, the system is characterized by a porosity of 0.41 (as in the 
experimental system reported by Guittonneau et al. 2011) and a mixture of quartz sand and 
granite upon which the borosilicate glass coupon rests. A diffusivity of 10–12 m2 s-1 for all ions 
was assumed for the sand-granite mixture. The alloy specimens included in the experiments 
were not considered in the modeling. From 50 nm out to 200 nm, the system was assumed to 
consist of a borosilicate glass with a porosity of 1%. The diffusivity of the borosilicate glass 
was assumed to follow a threshold type of model (Navarre-Sitchler et al. 2009), with a value 
of 5 × 10-24 m2 s-1 (in approximate agreement with the value proposed by Gin et al. 2013a) 
for values of the porosity below 50% and a value of 10–12 m2 s-1 for porosity values above 
50%. Modeling carried out on weathered basalts (Navarre-Sitchler et al. 2011) indicate that a 
simple porosity dependence (as in an unmodifi ed Archie’s Law formulation) cannot replicate 
the observed concentration profi les, since the reaction front continuously widens due to the 
simulated porosity and diffusivity enhancement. Some form of a threshold model, based on the 
idea that dissolution and porosity enhancement increase the rate of diffusivity by increasing 
connectivity (Navarre-Sitchler et al. 2009, 2011), appears to be required.

In the modeling, the dissolution of the glass is assumed to follow a Transition State 
Theory (TST) rate law with a dependence on the saturation state (departure from equilibrium, 
or affi nity) with respect to amorphous silica (Grambow 2006). Since a linear TST dependence 
on the departure from equilibrium does not capture the sharp B front and places the B (and 
Na) dissolution fronts too close to the Li–H inter-diffusion front, the dissolution of the glass 
is assumed to have a cubic dependence on the departure from equilibrium with respect to 
amorphous silica. The rate of glass corrosion is also assumed to depend on the hydration state 
of the glass: before the H2O diffusion front has penetrated the pristine glass and hydrates it, 
the rate is effectively zero. A higher-order dependence on the concentration of hydrated sites 
in the borosilicate glass is also required so as to locate the boron release front further from the 
Li–H inter-diffusion front. The rate law used is therefore
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where k is the rate constant and aH-hydrated is the concentration of hydrated sites in the glass, 
and Qam-silica and Kam-silica are the ion activity products and equilibrium constants with respect 
to amorphous silica. This formulation could be reconciled with a model in which the number 
of hydrated sites needs to reach some (high) threshold value before the dissolution of the glass 
accelerates appreciably.

Here we present a semi-quantitative comparison of the simulation results from the KC 
model with nanometer discretization to the data from the Gin et al. (2013) study. The focus is 
on the relative position of the fronts, and in general, the width of the fronts as they evolve over 
time rather than on the total extent of alteration or even the rate of alteration. Schematically, 
the geometry that we wish to capture in the modeling is given in Figure 14 above (Gin et al. 
2013a).

The model results for the 1-D run after three years are shown in Figure 16A. The 
simulations predict that the Li–H inter-diffusion front maintains a relatively constant width 
of about 20 nm over three years (time evolution not shown). The B release (dissolution) front 
is even sharper and is located further from the pristine glass interface than is the Li–H inter-
diffusion front, a result that can be justifi ed based on the assumption that the dissolution of the 
glass occurs rapidly when hydration of the glass is nearly complete. Thus, the key component 
of the model is the coupling of glass dissolution to the extent of hydration, which is driven by 
diffusion into the pristine glass (not the PRI discussed by Frugier et al. 2008). According to 
the simulations, the rate-limiting step for the overall glass alteration process is the diffusion 
into the pristine glass—once hydrated, the borosilicate glass dissolves quickly, as indicated by 
its sharp front. The simulations also predict an early time period when the steady-state 20-nm 
inter-diffusion zone is not fully developed (results not shown), which might help to reconcile 
the observations by Hellmann et al. (2015) of a nanometer to even sub-nanometer Li+ front in 
their shorter term experiments (recall that the Gin et al. 2013 study was based on experiments 
conducted over nearly 25 years, as described in Guittoneau et al. 2011).

Figure 16. A) Simulation results using the KC model, with alteration proceeding from left to right. The 
original glass wafer edge is located at 50 nm. Note the position of the boron release front further from the 
pristine glass than the Li–H inter-diffusion front, in qualitative agreement with the observations shown in 
Figure 14. The simulations predict that the Li–H inter-diffusion front maintains a relatively constant width 
of about 20 nm over three years (time evolution not shown). B) Position of borosilicate glass corrosion 
front as a function of time. The linear advance rate is only compatible with a model in which diffusivity is 
enhanced within the altered zone, resulting in a nearly constant width reaction zone over time.
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 In addition, the simulations predict a linear rate of front propagation over time once the 
initial period (less than 1 year) is passed (Fig. 16B). This can be explained by a constant-width 
zone over which diffusion is limiting, in agreement with earlier results on weathering of basalt 
(Navarre-Sitchler et al. 2011). In the case of the nuclear glass altered for 25 years, the constant 
width is a result of the development of an approximately 20-nm-wide inter-diffusion zone at 
the edge of the pristine glass. Between this zone and the dissolving gel at the outer boundary, 
the increase in porosity is suffi cient that diffusion is not limiting (even if the zone were to 
grow with time). If diffusion through a continuously growing silica-rich gel layer was limiting 
the rate, the dependence on time should be parabolic. A constant width PRI, as discussed by 
Frugier et al (2008), could also result in a linear front advance rate.

SUMMARY AND PATH FORWARD

While true pore-scale models are arguably the most rigorous way to treat geochemical 
processes operating at the pore-scale, micro-continuum modeling approaches offer some 
advantages in terms of their relative ease of use, ability to apply well-tested software (e.g., 
Steefel et al. 2015), and computational effi ciency. This approach offers the additional advantage 
that micron to even nm-scale mineralogical, chemical, and physical heterogeneities can be 
incorporated into the simulations. The disadvantage of the approach is that one still faces many 
of the standard limitations of continuum representations of the pore scale, namely the need 
to average geochemical, mineralogical, and physical properties and the inability to explicitly 
resolve interfaces between solids, gases, and fl uids. Many important parameters and processes 
still operate at the sub-grid scale (e.g., nanopore connectivity) and these must be accounted for 
in order to achieve a realistic simulation of pore-scale geochemical processes. The challenge 
of dealing with reactive surface area, for example, persists in any continuum treatment of 
the pore-scale, in contrast to the more rigorous geometric methods in true pore-scale models 
where the fl uid–mineral interface is resolved explicitly (Molins 2015, this volume).

Certainly the advent of new microscopic characterization techniques, including 
increasingly higher resolution X-ray microtomography, BSE-SEM, and FIB-SEM, are 
motivating the search for novel and complementary modeling methods. The longer time and 
space scales that achievable with the micro-continuum models is another reason why they will 
not soon be replaced by either molecular dynamics (MD) modeling approaches or even true 
pore-scale models. The true pore-scale and MD approaches have an important role to play 
here, however, since they can be used to provide upscaled parameters for the micro-continuum 
models. Eventually, one expects the development of a new class of hybrid models that link 
the molecular, true pore-, and micro-continuum scales within a single dynamic, multi-scale 
framework.

Much remains to be done in the fi eld of micro-continuum modeling of pore-scale 
geochemical processes. In fact, the fi eld is still in its infancy. Since the mineralogical 
mapping is predominantly carried out in 1-D or 2-D, we require an improved treatment of 
how 3-D effects and parameters are incorporated. Tortuosity and permeability are two of the 
most obvious examples. We also need improved representations of the correlation between 
mineralogy and physical transport properties like diffusivity and permeability at the nano- 
and micro-scale. Consistent upscaling strategies are required so that it is possible to change 
model resolution without undue loss of process fi delity. Ultimately, it is clear that the micro-
continuum approaches will need to incorporate a more formal multi-scale framework, 
particularly where there is interest in capturing nanoscale features like pore connectivity and 
reaction fronts within larger scale domains.
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