INDEX

Note: Page numbers followed by "f" and "t" indicate figures and tables.

abelsonite	96	Aquificae
abiotic hydrocarbon synthesis	451-454	Aquificales sp
accretion	101 101	aragonite, ove
carbon loss during	184	urugointe, ore
chondrites, evolution and	81–83, 81t	aragonite grou
heterogeneous, during core	01 00,010	at high pr
formation	189–191, 190f	mineral e
planet formation and	160–163, 162f	overview
siderophile element	100 105, 1021	serpentin
partitioning and	243-246	skeletal b
accumulation chamber method	330	arc volcanism
acetate	593	are volcalitati
acetone	513–514, 513f	archaea
acetyl-CoA pathway	596	anaerobic
achondrites	156	carbon fiz
acidophiles	592f	in deep b
Actinobacteria	587t, 591	defined
adaptations, to high pressure	563-564,	high-pres
adaptations, to high pressure	637–638	in serpent
adsorption, of hydrocarbons in na		viruses of
	99–506, 519–522	Archean Eon
AGB stars. See asymptotic giant		
	branch stars	Argon isotopi
aggregation, Precambrian deep carbon cycle and	208-209	Argyle diamo
2	208-209	artinite
albite-diopside join, silicate	2606 2706 272	asymptotic gi Atlantis Mass
glasses along	269f, 270f, 272	Atlantis Mass
albite glass	275, 275f	attanyata di tat
albite melts	312 91	attenuated tot
algae, evolution of biosphere and		(ATR-FT
alkalinity, carbon dioxide solubili	-	aurichalcite
in silicate melts and	255-256	AVIRIS hype
alkaliphiles	590–591, 592f	Avorinskii Pla
alkanes	525-534	awaruite
alkylthiols	489	azurite
allotropes of carbon, overview of		D 11 1.
	8–13, 9t, 16t	Bacillus subti
Alphaproteobacteria	633, 634, 657	bacteria. See a
alumina, behavior of alkanes near		carbon fix
	5–528, 526f, 527f	in deep b
amino acids	598	defined
anaerobic methanotrophic archae		piezophil
(ANME)	588, 590, 596	pressure,
ancylite group	31	in serpent
andesite	111	shock pre
)f, 22t, 26, 27, 87	viruses of
ANME. See anaerobic methanotr	-	Bacteroidetes
annealing experiments	274–277, 275f	Banda Sunda
anthracite	133, 133f	banded iron f
anthropogenic processes	324-325, 550	barophily

Aquificae	586t
Aquificales spp.	633
aragonite, overview of mineralogy	
and gointe, over view of mineratogy	27–28, 28f
aragonite group carbonates	27-20, 201
at high pressure	64, 64f
mineral evolution and	91
overview of mineralogy of	22t, 27–28, 28f
serpentinization and	591-592
skeletal biomineralization and	
arc volcanism 207-	-208, 324, 324f,
	331–332, 340
archaea	
anaerobic methanotrophic	588, 590, 596
carbon fixation and	596
in deep biosphere	555
defined	651t
high-pressure tolerance in	638, 639f
in serpentinite settings	585t
viruses of	652–653, 653f
Archean Eon 87–89	, 203–209, 206f
Argon isotopic dating	394
Argyle diamond mine	358
artinite	20f
asymptotic giant branch (AGB) sta	
Atlantis Massif	580–581, 588,
Attalitis Massii	
attenueted total reflection ETID	590, 591
attenuated total reflection FTIR	524
(ATR-FTIR)	534
aurichalcite	20f
AVIRIS hyperspectral imagers	329
Avorinskii Placer	19
awaruite	480
azurite	31, 90, 90f
Bacillus subtilis	639
bacteria. See also Specific species	
carbon fixation and	596
in deep biosphere	555
defined	651t
piezophilic	632-635
pressure, lipids and	631
in serpentinite settings	586–587t
shock pressure resistance in	639
viruses of	652–653, 653f
Bacteroidetes	586t
Banda Sunda arc	341
banded iron formations (BIF)	87
barophily	632–635
Datophily	032-033

basalt melts	253, 255f, 263f	biomineralization	29, 81t, 94–96, 95f
Bastin, Edson Sunderland	547–548	bioremediation	550, 560–561
bastnäsite group	31	biosphere (deep)	
Bay of Islands Ophiolite, Newfou	ndland	analytical methodology for	or 550–553, 563
	9, 583, 588, 590	biomass of	557-558, 564-565
Bay of Prony, New Caledonia	582	current state of knowledg	e on 548–550, 549f
Bayan Obo, China	31	diversity of life in	4-5, 555-557,
bct-C4 carbon	54, 54f		563-564
β-track autoradiography	253, 255, 259,	drilling and coring studies	s and 553–555
	260, 263, 280	early studies and compreh	nensive
Betaproteobacteria	583–585, 586t	reviews on	547-548
BIF. See banded iron formations		ecosystem services provid	
Big Bang	150, 150t	future research on	562-566
biochemistry/biophysics (high-pre-		genomics of	634–635
adaptations to high-pressure a		intermediate ocean and	91–93
	-639, 638f, 639f	microorganisms occupyin	ng 632–634, 633f
biochemical cycles and	632–637, 633f	origins of life and rise of	
biogeophysics and	552	chemolithoautotrophs	
of lipids and cell membranes		photosynthesis and Great	
lamellar lipid bilayer pha		Oxidation Event and	89–91
	623f, 624f, 625f	physiological processes o	
membranes	630–631, 630f		564–565
mixtures, cholesterol, and	1 1	skeletal biomineralization	
	626–628,	snowball Earth and viruses of	93–94
nonlomallar phases	627f, 628f	deep sediments	660–661
nonlamellar phases relevance to deep carbon	628–630, 629f 631–632	hydrologically active	
of nucleic acids	620–622, 621f	injurologically active	658–660, 659f
overview of	607–608, 640	metagenomic analysi	
of proteins and polypeptides	007-008, 040		662–665, 664t, 665f
aggregation	612-613	surface-attached com	
energy landscapes	613–616,	bituminous coal	133, 133f
85	614f, 616f	black smokers	331, 582
folding and unfolding	611–612, 613f	bolide impacts	68, 562
phase diagrams	616-620,	bonding, overview of	8
i c	617f, 618f	Bowen, Norman	79
relevance to deep carbon	620	Brachyspira spp.	657
structures	608-609	Bridgman, Percy	611
thermodynamics	609-610	brown dwarfs	150
volume paradox	610-611	brucite	594, 597
biofilms	583, 588–590,	bulk silicate Earth (BSE)	167, 169, 170f,
	f, 595f, 661–662		186–188, 187f,
biogeochemical cycles			190f, 234–237
deep biota and		Bundy, Francis	13
high-pressure microbiology a		burial metamorphism	131–136
	632–637, 633f	Burkholderiales	583-584
phages and	557	butene	135
in serpentinite settings	583–590, 584f	bütschliite	30
viruses and	655, 656f	Cabaaa da Vida Darta - 1	570 5914 500 501
biogeophysics	552	Cabeço de Vide, Portugal	579, 581t, 590–591
biohydrometallurgy biomarkers 45	560 5–457, 558, 599	caklinsite calc-silicate skarns	31 110
biomass, formation of hydrocarbo		calcite. See also Specific form	
oromass, rormation or nyurocarbo	449–451		s 21–24, 21f, 127, 471
	-++>-+J1		21-27, 211, 127, 471

calcite-aragonite sea intervals	95
calcite group carbonates	
experimental studies of minera	1
solubility in CO ₂ -H ₂ O	118
at high pressure	63
as inclusions in granitoids	112
mineral evolution and	91–93
overview of mineralogy of	21–26, 21f,
22	2t, 23t, 25f, 27f
serpentinization and	591-592
skeletal biomineralization and	95–96
calcium carbonates, hydrated	31-32
Calvin-Benson-Bassham (CBB) pa	thway
	583, 593
Cambrian Period	94
capsid, defined	651t
carbides. See also Specific forms	0011
	f, 57t, 239–241
mineral evolution and	80
	19, 14t, 15t, 16t
structure, bonding, and minera	
	55–57, 57f, 57t
carbon dioxide	<i>33–37, 371, 37</i>
abiotic hydrocarbon formation	474, 480, 486
in crust and	474, 480, 480
dissolved in silicate glasses measurements of volcanic	274
	2264 2274 2284
	336t, 337t, 338t
methods for measuring	225 222
geological efflux of	325-332
in silicate glasses	270–273, 271t
in silicate melts, eruptions and	252
simulation studies and	524, 531
solubility in anhydrous silicate	
	252–259, 255f,
	256f, 257f, 258f
solubility in hydrous silicate m	
spectroscopic analysis of in sil	
	266–270, 267f
storage in deep coal beds	517–518, 518f
storage in deep microbial com	
structure, bonding, and minera	
	9f, 60f, 61f, 62f
volcanic emissions of	323-325
C-H-O-N-S fluids, thermophysical	
properties of	495–496
carbon isotopes. See also isotopic s	
abiogenesis vs. biogenesis and	
	598–599, 599f
core carbon content and	233–237, 246
hydrocarbon origins and	455–456, 456f
carbon K-edge spectroscopy	438
carbon monoxide	
microbial utilization of	593
in silicate glasses	274

in silicate glasses

in solar nebula	159–160
solubility in silicate melts under	er
reduced conditions	263
solubility in water	128-129, 129f
structure, bonding, and	
mineralogy of	61, 62f
volcanic emissions of	325
C-O-H fluid/melts	020
diamond formation and	356, 373–374,
diamond formation and	393, 394, 405f
inhibition of methane	575, 574, 4051
formation and	129–130, 131f
magma ocean carbon storage a	
mineral evolution and	83
neutron scattering and NMR for	
analysis of	498-499
solubility in silicate melts and	251-252
solubility of graphite in	136–137,
	136f, 470
solubility under reduced condi-	
	266, 265f, 266f
sorption studies and 500	-501, 504, 535
speciation at mantle conditions	
468–	473, 469f, 470f
speciation in peridotite and	371-372
carbonaceous chondrites	156, 167, 184,
	197-198
carbonaceous dust	152
carbonado diamonds	376, 377f
	296, 295f, 297t
carbonate groups	, ,
nature of in silicate glasses	273-274
in silicate glasses	270–273, 271t
spectroscopic analysis of in	,
silicate melts	267–268, 268f
carbonate melts	207 200, 2001
atomic structure of	292
carbonate glasses and	295-296,
earbonate glasses and	295f, 297t
cation electronegativity of	2931, 297t 292–293, 293f
diamond crystallization and	
diamond formation in	310 401f, 402–404
as ionic liquids	292, 293f
magmas related to	310-311
mineral evolution and	83-84
in modern convecting oceanic	
	214–216
overview of	289–291, 290f
physical properties of	291–292, 291t
speciation in	294, 294f
carbonated peridotite solidus	201–202, 201f,
	207, 214–215
carbonates. See also Specific forms	
anhydrous	28-31

aragonite group	
at high pressure	64, 64f
mineral evolution and	91
overview of mineralogy of	
22t,	27–28, 28f
serpentinization and	591-592
skeletal biomineralization and	95–96
calcite group	
experimental studies of mineral	1
solubility in CO ₂ -H ₂ O	118
at high pressure	63
as inclusions in granitoids	112
mineral evolution and	91-93
overview of mineralogy of	21–26, 21f.
25	3t, 25f, 27f
serpentinization and	591-592
skeletal biomineralization and	95-96
decomposition of, hydrocarbon	<i>)5)0</i>
generation in crust and	487–488
equilibrium speciation in upper	+07-+00
mantle and	471-472
experimental studies of mineral	4/1-4/2
solubility in sodium chloride	
-	110 117f
	–118, 117f
experimental studies of mineral sol	
	115f, 116f
hydrocarbon formation from	453 112–115
overview of chemistry of	112–115
rhombohedral	02.06
mineral evolution and	83, 96
overview of 19–2	7, 20f, 21f,
	22t, 23t
serpentinization and	576, 576f,
	–595, 595f
	9, 68f, 69f
storage of carbon at depth as	201-203
structure, bonding, and mineralogy	
63–69,64f, 65f, 66	
subduction and sequestration of	87
in terrestrial carbon inventory	165–166
	4f, 65f, 66f
trigonal	63–64
carbonatites	
diamond formation and	371-372
diamonds, kimberlite and 367	7, 403–404
exotic carbonate minerals	
associated with	30-31
fibrous diamonds and	364, 365f
future research on	311-312
geochemistry of 301–303,	302t, 303t
isotopic signatures of	305-308
	–305, 305t
mineral evolution and	83-84
overview of 289-	-291, 290f,
	–297, 299f

silica clathrate in	66
tectonic setting of	298-300
temporal distribution of	300-301, 301f
theories on origins of	309-311
carbonic acid	112
carbonic anhydrase	593
carborundum. See also mossainite	14
carbothermal residua, overview of	296
carboxylic acids, abiotic hydrocarb	on
formation in crust and	489
carbynes	52
Carnobacterium sp.	634
catalysis. See also enzymes	
of Fischer-Tropsch-type synthe	esis
	-482, 486-487
of hydrocarbon synthesis by cl	
	489-490, 525
hydrothermal circulation and	596
cathodoluminescence (CL)	367, 368–369
cation electronegativity of carbona	
earion electronegativity of earbona	292–293, 293f
Caudovirales	651t
CBB pathway. See Calvin-Benson-	
pathway	
cellular membranes	622–632
cementite. See also cohenite	18
Census of Deep Life	553, 565
Central Indian Ridge	578t, 582, 590
cerussite	27, 28
Chapman-Enskog kinetic theory ap	
charnockitization	4 prodein 515
chemical properties of carbon	-
allotropes	8-13
anhydrous carbonates	28-31
aragonite group	27–28, 28f
	19, 14t, 15t, 16t
in fluids of crust and mantle	112–138
hydrous carbonates	31–32
mineral-molecule interactions	34-35
minerals incorporating organic	
minerals incorporating organic	32–34, 33t
overview of	7-8, 35
rhombohedral carbonates	19–27, 20f,
momonicular carbonaces	21f, 22t, 23t
chemolithoautotrophs, evolution of	
biosphere and	86–89
chibaite	33
chlorophyll, biomarkers for origins	
hydrocarbons and	455
CHNOSZ program	119–120
cholesterol	626–628, 628f
chondrites. See also meteorites	020-028, 0281
in accretion stage of evolution	81–83, 81t
altered	82-83
alleleu	
carbonaceous 156, 167	, 184, 197–198

CI	153–154, 153t, 158
classification of	156
magma ocean carbon cycl	le and 184
organic matter in	158
primary	81-82
as reservoir of terrestrial c	
chondritic Earth model	150
chromite	480-481, 482
chromium-in-Cpx barometer	384, 384f
1	388, 388f, 390
Cr ₂ O ₃ vs. CaO plots <i>Chromohalobacter</i> spp.	588, 5881, 590 638
11	
CI chondrites	153–154, 153t, 158
CL. See cathodoluminescence	
Clapeyron equation	621, 624
clathrate hydrates. See also mo	
mineralogy and crystal ch	
	33–34, 33t, 61
overview of	449-450
source of methane in	459-460
stability in water-methane	
clay minerals	94, 489–490, 525,
-	527-528
CLAYFF force field	534
Clifford's Rule	360-361
climate change, subsurface mi	crobes and
	565–566
clinopyroxene	382, 384, 384f
clinopyroxenes, REE patterns	
closed-chamber method	330
Clostridiales	584–587
	621
Clostridium perfringens	
clouds, dense molecular	80, 152
cloudy diamonds	364, 368
clustered regularly interspaced	
palindromic repeats (CRI)	
CNO cycle	150
	-134, 517–518, 518f
Coast Range ophiolite, United	
	577, 580t
coated diamonds	357f, 358, 364
coesite	385–386, 386f
cohenite	18, 19f, 56–57, 219,
	239–243, 242f
Collembola	556
Collier-4 kimberlite, Brazil	395
Colwellia sp. MT-41	632
Colwellia spp.	634
comets	153t, 154–155, 158,
	168–169, 549
component approach to therm	
of oxidized carbon in dilu	
aqueous solutions	118–119
compound eyes	94–95, 95f
compressibility, of proteins, ve	
computational sciences	553
computational sciences	555

158	computed tomography. See X-ray	computed
156	tomography	
184	condensation sequence	152, 159–160
158	condensing effect	626
1-82	conductivity, electrical	277–280, 290,
169	•	298, 300f
150	conjugation	659
482	constant-diversity (CD) model	655–657, 656f
384f	contamination	550, 553-554
390	continental margins, subsurface	,
638	microbes and	565
158	continents	208-209
	convection, mantle	199–200
624	cordylite	31
021	core	51
	carbon content of	167–168,
t, 61		31–237, 245–247
-450	density and phase diagram	51-257, 245-247
-460	constraints on carbon con	ntant of
-400 -534		3, 239f, 246–247
525,	equilibrium fractionation of c	
-528	between mantle and	185–189, 187f
534	heterogeneous accretion and	
-361	metal-silicate equilibration	
	during formation of	189–191, 190f
-566	inefficient formation of, exce	
384f	siderophile element abun	
393	in mantle and	198–199
330	magma ocean carbon cycle d	
-587	formation of	184–191, 185f
621	siderophile elements in mant	le and 243–247
152	coring process	550–551, 551t
368	CORKs	551, 551t, 563
	cratons, mineral evolution and	84–86
663	Crenarchaeota	585t
150	CRISPR. See clustered regulary i	nterspaced short
518f	palindromic repeats	
	critical depletion effect	500
580t	crust	
364	abiotic hydrocarbon formation	on in 474–494
386f	deep microbial communities	and 562
219,	locations of diamonds in	359-361, 363f
242f	mineral evolution of	83-86
556	overview of aqueous fluids of	f 109–110, 138
395	oxidized carbon in aqueous f	
632	at high P and T	112-128
634	recycling of carbon in	200
158,	reduced carbon in aqueous fly	
549	at high P and T	128–138
547	sources of carbon in aqueous	
	110–112	1.3145 01
-119	crystallization	196, 310
, 95f	cultivation methods	552
-610	cyanobacteria	87-88
553	cytoplasm, defined	651t
555	cytopiasin, ucinicu	0.511

dacite glass	275, 275f, 277f
Darwinian threshold	669
DCDD. See dolomite-coesite-	
DCO buffer. See diamond-car	
DCO Program. See Deep Car	
Program	oon observatory
decarboxylation reactions	134–136, 134f
decompression melting, depth	· · · · ·
r	200, 201–203, 201f
Deep Carbon Observatory (D	
1	607
deep-Earth gas hypothesis	451
Deep Hot Biosphere theory	451-452
degassing. See also volcanic e	emissions
	112, 325, 330-331
degree of polymerization	272–273, 279f
dehalorespiration	564
Deinococcus spp.	638
Del Puerto Ophiolite, Californi	
Deltaproteobacteriaa	586t, 633
dense molecular clouds	80, 152
density	
of carbon dioxide in silic	ate melts 280
constraints on core carbo	
	239–240, 246–247
of pore fluid at fluid-rock	
	501–503, 503f
depleted mantle (DM)	166–167
desorption, of hydrocarbons a	
fluid-rock interface	497, 499–506
Desulfotomaculum	587, 587t, 588
Desulfovibrio spp.	634
deuterium burning	150
diagenesis	450-451
diamond anvil cells (DAC)	423–426, 425f
diamond-carbon-oxygen (DC	
diamond stability field	359
diamondite	358
diamonds. See also nanodiam	
carbonate inclusions in	290
carbonate melts and cryst	
cloudy	364, 368
coated	357f, 358, 364
distribution in Earth	359–360, 360f
E-type	393–394
fibrous	364–368, 365f,
and Grant mail 1	377f, 381f, 394
as first mineral	80, 81t
fluid and micro-mineral	264 269 2655 2665
inclusions in	364–368, 365f, 366f
formation of	260, 275, 2506
in lithosphere	369–375, 370f
in sublithosphere	375–381, 377f,
	379f, 381f

1 1 1	1 1
geodynamics, carbon motility	, and carbon
reservoirs in	
continent assembly, plate	
and ancient recycling	
	397f, 398f, 399f,
	400f, 401f
deep carbon cycling with	mantle
convection	402-403
kimberlites, carbonatites	and 403-404
primordial vs. recycled ca	arbon and
1 2	404-406
geologic setting for formation	
8888	360-361, 363f
impact	359
inclusions hosted in	557
	296 206
geochemistry and age of	386–396,
	387f, 388f,
	389t, 391t, 392f
thermobarometry of	382–386,
	383f, 384f, 386f
internal textures in	368-369
lithospheric	359, 368–375
microscale components in	361-368
monocrystalline	357f, 358, 394
nanodiamonds	157
overview of	355-356
overview of mineralogy of	8, 9t, 11–13,
overview of mineratogy of	11f, 12f
parental and host rocks of	358-359
-	356–358, 357f,
polycrystalline	
······	368, 376, 377f
questions and future work on	405-406
structure, bonding, and miner	
	50–51, 50f
superdeep (sub-lithospheric)	
dating of	395
deep carbon cycling with	
mantle convection an	nd 402–403
defined	359
formation of	375-381, 377f,
	379f, 381f
isotopic composition of	377f
mineral inclusions in	390, 391t
nano-inclusions in	368
texture of	369
synthesis of	13
types of	356–358, 357f,
types of	359–360
1:00	339-300
diffusion	200 202
of carbon in silicate melts	280–282,
g • • • • •	281t, 283f
degassing in tectonically	
active areas and	330-331
in nanopores, simulation of	515-519, 530

diopsides	384
dipicolinic acid concentrations	558
Disko Island, Greenland	18
diversity	
in deep biosphere	4–5, 555–557,
	563-564
of viruses	654, 664–665
DM. See depleted mantle	
DNA (deoxyribonucleic acid)	
	555, 620–622, 652
DNA libraries	555-556
dolomite-coesite-diopside-diam	
(DCDD)	373
dolomite group carbonates	21, 22t,
1 1	26–27, 27f
dolomites	(2) (4
at high pressure	63-64
overview of mineralogy of	22t, 26, 26f
as source of carbon in crust and mantle fluids	110
	110 57–58
dry ice	57-58
<i>dsrAB</i> genes dust. <i>See also</i> interplanetary dus	
dust. See also interprinetary dus	170–171
	1/0-1/1
E-type diamonds	393–394
East African Carbonatite Line (I	
	305, 306t, 307f
East Pacific Rise	305, 306t, 307f 556
East Pacific Rise EBSD. See electron backscatter	305, 306t, 307f 556
East Pacific Rise EBSD. <i>See</i> electron backscatter EC. <i>See</i> eddy correlation	305, 306t, 307f 556
East Pacific Rise EBSD. See electron backscatter	305, 306t, 307f 556
East Pacific Rise EBSD. <i>See</i> electron backscatter EC. <i>See</i> eddy correlation eclogites	305, 306t, 307f 556 diffraction
East Pacific Rise EBSD. <i>See</i> electron backscatter EC. <i>See</i> eddy correlation eclogites as diamond carriers	305, 306t, 307f 556 diffraction 358, 361, 385
East Pacific Rise EBSD. <i>See</i> electron backscatter EC. <i>See</i> eddy correlation eclogites as diamond carriers	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of diam oxygen fugacity and diamon	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f ad formation in 372–373 396, 399, 400f
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamon	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamon inclusions and	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f ad formation in 372–373 396, 399, 400f 367 ad 382, 383f
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamon inclusions and ecosystem services, provided by	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f ad formation in 372–373 396, 399, 400f 367 ad 382, 383f
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for monit	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for monit volcanic carbon dioxide em	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for moniv volcanic carbon dioxide em EELS. See electron energy loss	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f ad formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330 spectroscopy
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for monit volcanic carbon dioxide em EELS. See electron energy loss eicosapentaenoic acid (EPA)	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330 spectroscopy 635
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for moniv volcanic carbon dioxide em EELS. See electron energy loss	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330 spectroscopy 635 ry of diamonds
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for monit volcanic carbon dioxide em EELS. See electron energy loss eicosapentaenoic acid (EPA) elastic methods, for geobaromet	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330 spectroscopy 635 ry of diamonds 385–386, 386f
East Pacific Rise EBSD. See electron backscatter EC. See eddy correlation eclogites as diamond carriers as diamond inclusions isotopic composition of dian oxygen fugacity and diamon plate tectonics and syngenesis and thermobarometry of diamor inclusions and ecosystem services, provided by deep biosphere eddy correlation (EC), for monit volcanic carbon dioxide em EELS. See electron energy loss eicosapentaenoic acid (EPA)	305, 306t, 307f 556 diffraction 358, 361, 385 388–390, 3 89t, 391t monds with 377f, 379–380, 381, 381f and formation in 372–373 396, 399, 400f 367 ad 382, 383f 560–562 toring issions 330 spectroscopy 635 ry of diamonds

electrochemical gradients	592f
electron acceptors	637
electron backscatter diffraction (El	
electron diffraction	430
electron donors	558-559, 583
electron energy loss spectroscopy	,
	431–435, 432f,
	434f, 534
electronegativity, cation	292–293, 293f
ELNES. <i>See</i> near-edge structures	
EMOD. See enstatite-magnesite-ol	livine-diamond
emulsification	191
endospore abundance	558
enstatite-in-Cpx thermometer	384, 384f
enstatite-magnesite-olivine-diamon	
(EMOD)	371–372
Enterococcus faecalis	639
enzymes	595-596
EPA. See eicosapentaenoic acid	575-570
epigenetic inclusions	366
Epsilonproteobacteria	586t, 633
equations of state approaches	533
equilibrium speciation	555
for C-O-H system in mantle	468-473,
for C-O-II system in manue	408–473, 469f, 470f
of carbon in silicate melts	274-277,
of carbon in sincate mens	274–277, 275f, 277f
of hydrocarbons in nanopores	519-522,
of hydrocarbons in nanopores	521f, 524f
Erzebirge terrane, Germany	3211, 3241
escape hypothesis	667
	-638, 638f, 639
Eukarya	555, 556, 639
Eureka diamond	12
	583
Europa	585t, 633
Euryarchaeota	585L, 035 85
eutectic fluids, granitization and evenkite	83 96
evolution	90
diamond research and	13
galactic chemical	150, 152
0	
hydrated calcium carbonates a impacts of viruses on	654–658
mineral	
accretion stage of	81–83, 81t
biosphere development in	
crust and mantle processing	
	81t, 83–86
overview of	79–81, 81t
plate tectonics and	85-86
unanswered questions abo	out 96–97
evolutionary metadynamics	49
excess mantle carbon paradox	188–191,
	198–199
extracellular polymeric substances	594

Faint Young Sun Paradox	207-208
fayalite-magnetite-quartz (FMQ) be	enchmark
	371, 468
fermentation	590-591,637
Fermi diad	267
FIB. See focused ion beam	
	364–368, 365f,
	377f, 381f, 394
Firmicutes	587t
Fischer-Tropsch synthesis	452-453, 476,
I S	476f, 477
Fischer-Tropsch-type (FTT) synthe	
	-487, 476f, 576
FISH. See fluorescence in situ hybr	
fitness factors	658
flagellar motility	635
flow through in situ reactors (FTIS)	R) 551, 563
fluid-rock interfaces	
abiotic hydrocarbon formation	in crust and
5	474-475
deep biosphere and	553
hydrocarbons at	
adsorption-desorption beha	avior of
1 1	497, 499–506
dynamic behavior of	497, 506–515
molecular modeling and in	
properties of	497, 515–534
overview of	495-497
microstructure of 503-	506, 504f, 506f
molecular modeling and interfa	
properties of	515-534
fluorescence in situ hybridization (1	FISH)
	555, 558
focused ion beam (FIB) 367	-368, 427-428
folding (protein)	
pressure-induced unfolding and	d 611–612
protein volume paradox and	610-611, 612
thermodynamics of	609–610,
	614–618, 614f
fore-arc degassing	340
formate	32
formic acid	135–136, 593
fossil fuels	111
fossil record. See also biomineraliz	ation 29
Fourier transform infrared spectros	copy (FTIR)
for carbon dioxide diffusivity	
in silicate melts	280–282, 281t
for carbon speciation	
	277f, 278f, 279f
for measurement of volcanic	
carbon dioxide emissions	326-327
for solubility of carbon dioxide	
in silicate melts	252-253
for validation of simulation pre-	edictions 534

	8
FTIR spectroscopy. See Fourier transform infrare	d
spectroscopy	
FTISR. See flow through in situ reactors	
FTT synthesis. See Fischer-Tropsch-type	
synthesis	
fugacity. See oxygen fugacity	
fullerenes 8, 9t, 50f, 52, 54–5	5
fungi 63	3
<i>Fuselloviridae</i> 653f, 66	2
<i>i usenovni uuce</i> 0551, 00	-
Caldral Didag	2
Gakkel Ridge 58	
galactic chemical evolution (GCE) 150, 15	
Galathea expedition 63	
Gammaproteobacteria 586t, 588, 591, 63	4
garnet-olivine-orthopyroxene (GOO)	
equilibrium 369–370, 370)f
garnet peridotite xenoliths 369–370, 370	
	,,
garnets	~
classification of 388, 388f, 39	
as diamond inclusions 388–390, 388f, 39	3
thermobarometry of diamond	
inclusions and 382, 383f, 38	4
gas hydrates. See clathrate hydrates	
GCE. See galactic chemical evolution	
GD. See gramicidin D	
gene transfer	_
in biofilms 66	
	2
horizontal	2
	_
horizontal parasitic elements and 66	9
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660	9),
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664	9), 1t
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66	9), 1t 2
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66	9), 4t 2
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65	9), 4t 298
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4	9), 4t 2988
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65	9), 4t 2988
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4	9), 4t 2988
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics	9), 4t 29888
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and	9), 4t 2 9 8 8 8
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58	9), 4t 29888
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63	9), 4t 2 9 8 8 8 3 5
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665	9), 4t 2 9 8 8 8 1 3 5 5,
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665	90,4t29888 355,6f
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665	90,4t29888 355,6f
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665	90,4t29888 355,6ft
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665	90,4t29888 355,6ft3
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55	90,4t29888 355,6ft3
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution	90,4t29888 355,6ft3
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient	90,4t29888 355,6ft3
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation	90,4t29888 355,6ft3
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation GGM. <i>See</i> granodiorite-granite-monzogranite	90,44298888 355,6ft 32
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation	90,44298888 355,6ft 32
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation GGM. <i>See</i> granodiorite-granite-monzogranite	9), 4298888 355, 5ft 32 2
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation GGM. <i>See</i> granodiorite-granite-monzogranite Gibbs free energy, calculation of 48, 118–12 Gibbs-Thomson equation 52	90,4t29888 355,5ft32 22
horizontal parasitic elements and 66 viruses and 651t, 656f, 657–660 659f, 663–664, 664 lateral 66 parasitic elements and 66 gene transfer agents (GTA) 657–65 generalized gradient approximation (GGA) 4 generalized transduction 656f, 657–65 genomics Bay of Islands Ophiolite, Newfoundland and 58 of deep microbial communities 634–63 of deep viral communities 660, 662–665 664t, 665 defined 651 Lost City Hydrothermal Field and 59 Richmond Mine and 55 geochemical evolution. <i>See</i> evolution GGA. <i>See</i> meta-generalized gradient approximation GGM. <i>See</i> granodiorite-granite-monzogranite Gibbs free energy, calculation of 48, 118–12 Gibbs-Thomson equation 52	9), 4t 2 9 8 8 8 1 3 5 5, 5f 1t 3 2 2 2 6

glasses	
albite	275, 275f
carbonate	295–296, 295f, 297t
dacite	275, 275f, 277f
jadeite	275, 312
phonolite	276
silicate	269f, 270–274, 270f
glassy carbon	439f
GOE. See Great Oxidation E	vent
goethite	26
Gold, Thomas	451-452, 458
GOO equilibrium. See garner	
orthopyroxene equilibriu	
gradients. See also pulsed fie	
biogeochemical cycles a	
deep gas theories and	451
geothermal, diamond for	
geotilerinai, diamona for	12, 359–360, 370f
hydrothermal circulation	
nydrothermar enedlation	596, 659f, 660, 666
hydrothermal vents and	666
maintenance of	548, 549f, 552
nanoscale X-ray diffract	
hanoseale X-ray unnact	436–437, 437f
origins of life and	666, 668f, 669
pH and electrochemical	591–592, 592f
redox	88–93, 372, 633
subduction zones and	86, 203
supercontinent breakup a	
1 1	
gramicidin D (GD) Grand Tack model 159	626 9, 163–165, 164f, 171
granitization 155	9, 103–103, 1041, 171 81t
C	112
granitoids	
granodiorite-granite-monzog	
graphene	8, 9t, 10, 50f, 52, 54
graphite	50 54 526
compression of	52–54, 53f
diamond vs.	12, 49
in fluids of crust and man	, ,
	136–137, 136f
growth of diamonds from	
high-pressure X-ray Ran	
analysis of	439f
hydrocarbon formation f	
mineral evolution and	81t, 83
overview of mineralogy	
phase transitions in	49–50
structure, bonding, and r	
graphite-to-diamond transitio	
graphite-to-lonsdaleite transi	
Great Oxidation Event (GOE	
biosphere and	81t, 89–91
gregoryite	30
Gruppo di Voltri, Italy	578–579, 581t
GTA. See gene transfer agent	ts

HAADF STEM. See high-angle annular dark-field STEM
Hadean Eon, inefficient subduction of
carbon in 204f, 205–208
Hall, Tracy 13
Halley comet 153t, 155
hallmark genes 667
Halobacterium spp. 638
harzburgitic garnet 367
Hawley equation 617
haxonite 82
HCTE method. <i>See</i> high-temperature
configuration-space exploration method
heap leach operations 560
helium 166, 457
helium burning 151
herringbone calcite 91–93, 92f
6
heterotrophs 558, 562, 590–591
high-angle annular dark-field (HAADF)
STEM 429, 429f
high-resolution transmission electron
microscopy (HRTEM) 429
high-temperature configuration-space exploration
(HTCE) method 516–517
highly-siderophile elements (HSEs) 163
HIMU-EM1 305, 306f
homeostasis 591
homogenization, viruses and 655–657, 656f
HorA 631
horizontal gene transfer
parasitic elements and 669
viruses and 651t, 656f, 657–660,
659f, 663–664, 664t
hot springs 654
Hoyle, Fred 451
HRTEM. See high-resolution transmission
electron microscopy
HSEs. See highly-siderophile elements
huanghoite 31
huntite 29–30, 30f
hydrates, methane. See methane hydrates
hydrocarbons. See also Specific hydrocarbons
abiotic
in crust 474–494
in upper mantle 468–474
abiotic origins of 451–454, 594–595,
597–598
biogenic origins of 449–451, 597–599
carboxylic acid decarboxylation and
134–136, 134f
chemical evidence for source of 454–457
experimental synthesis of 453–455
at fluid-rock interfaces
adsorption-desorption behavior of
497, 499–506

dynamic behavior of	497, 506–515
overview of	495–497
geological evidence for source	
from hydrothermal vents	454
microbial modification of	560-561
in minerals	454
in Mountsorrel, United Kingd	om 458–459
NMR analysis of	498
in Songliao Basin, China	459
in space	453
types of	449-450
unresolved questions in origin	ns of 459–460
hydrogen burning	150-151
hydromagnesite	20f, 31
hydrotalcite	31
hydrothermal circulation	
ingassing in modern Earth and	d 211
measurements of carbon diox	ide
fluxes from	339t, 341t, 342
precipitation of atmospheric c	
dioxide through	173
as source of carbon in crust a	nd
mantle fluids	111
hydrothermal conditions, Fischer-	Tropsch-type
synthesis and	476-487
hydrothermal vents	110 107
abiotic hydrocarbons from	454
biosphere and	549, 549f, 633
catalysts and	596
origins of life and	666–669
phage populations in	557
serpentinization and	582
viruses and	658–660, 659f,
viruses and	664, 666–667
hydrous carbonatas	23t
hydrous carbonates	23t 597
hydroxyapatite	328-329
hyperspectral radiometry	526-529
IDDo See intermlenetory duct part	alaa
IDPs. See interplanetary dust parti igneous rocks. See also carbonatit	
evolution of	
	81t, 83–84
exotic carbonate minerals	20, 21
associated with	30-31
hydrocarbon origins and	454, 457–458
ikaite	31-32
impact diamonds	359
impact shock metamorphism, min	
evolution and	82-83
<i>in situ</i> flow cells	551
<i>in situ</i> mining	560
infectivity paradox	662
infrared spectroscopy	
for carbon speciation in silica	
	-269, 267f, 267t,
268f, 268t,	269f, 270f, 271t

of carbonate glasses	295, 296f, 297t
for measurement of volcanic c	arbon
dioxide emissions	326-327
for solubility of carbon dioxid	e in
silicate melts	252–253
ingassing	194–196, 195f
insoluble organic matter (IOM)	158
integrases	663–664, 664t
Integrated Ocean Drilling Program	n (IODP)
554	4, 580-581, 590
intermediate ocean, evolution of	
biosphere and	81t, 91–93
internal pressure, diamond inclusio	,
	505
International Mineralogical	0
Association (IMA)	8
interplanetary dust particles (IDPs	
	152, 155–156,
	158, 170–171
interstellar medium (ISM)	152, 158
IODP. See Integrated Ocean Drillin	
IOM. See insoluble organic matter	
ionic liquids, carbonate melts as	292, 293f
iridium anomalies	93
IRMS. See isotope ratio mass spec	troscopy
iron	
carbon storage in deep upper t	0
lower mantle and	216-219, 217f
core composition and	231-232
density and phase diagram cor	
on core carbon content an	
on core carbon content an	
	238–243, 239f
disruption of hydration by CO	-
<i>P-T</i> fluids	127
Fe-C phase diagram	238–239, 239f
Fe ₇ C ₃	241, 243
as inclusion in diamond	56, 374–375
isotope fractionation and	236-237
iron carbides. See also cohenite	55–57, 57f,
	57t, 239–241
iron aarhan allaw/graphita fraction	
iron-carbon alloy/graphite fraction	
iron carbonates, mineral evolution	
iron silicides, mossainite and	17
iron sulfide bubbles	596, 669
ISM. See interstellar medium	
isotope ratio mass spectroscopy (II	RMS) 364
isotopic fractionation, during	<i>,</i>
Fischer-Tropsch-type synthesi	s 483–486,
riseller riopsen type synthesi	484f, 485f, 490
	4041, 4051, 490
isotopic signatures	
carbon	
abiogenesis vs. biogenesis	
	598–599, 599f
core carbon content and	233-237, 246
hydrocarbon origins and	
of carbonatites	305-308

deep biosphere and	552	latent redox systems	564
diamond and	364, 367, 376-381,	lateral flagellum gene cluster (LF	635
	377f, 394–396	lateral gene transfer	662
rhenium-osmium	395	lawsonite	402
isovite	19	LCHF. See Lost City Hydrothern	nal Field
Isua Greenstone Belt, Green	land 487–488, 594	LDA. See local density approxim	
		LF. See lateral flagellum gene clu	
jadeite glass	275, 312	libraries, DNA	555-556
Japan Trench	633	life, origins of	86-89, 594-595,
Josephine ophiolite, United	States 577		666-669, 6681
Jouravskite	20f	light elements, in core	231, 239, 247
Jupiter	153, 159, 164-165	light rare earth elements (LREE).	,
Jurassic Period	95	in carbonatites	302, 303
Jwaneng, Botswana	364	lignin	131-134, 1321
		lignite	133, 1331
Kaapvaal craton	339-370, 399,	limestone	110
1	399f, 400f	lipids 622–632	, 623f, 624f, 627f
Kairei Field	578t, 582	lithium burning	150
Katmai-Novarupta volcano e		lithoautotrophs	558, 562
keels	360, 360f	lithosphere	,
Kerguelen Archipelago	300, 309	diamond texture in	368-369
kerogen, formation of	450-451	formation of diamond in	359, 369–375
keystone taxa	565	modern, carbon and carbona	· ·
Kilauea volcano, Hawaii	344		215–216, 215f
Kimberley block	399	timing of diamond formation	
kimberlites		lixiviant fluid	560
carbonatites and	311	LmrA	631
coated diamond formati		local density approximation (LD	
as diamond carriers	12, 358, 360–361,	overview of	48 48
us diamond currens	403-404		81–582, 583, 590
diamonds, carbonatite a		Lollar, Sherwood	485-487
exotic carbides associate		long-chain carboxylic acids	131, 134–136
Group I vs. Group III, d			1–13, 11f, 51, 52
Kokchetav massif, Kazakhst		Lost City Hydrothermal Field (L	
komatiite	377f, 482, 594		9–581, 579t, 583,
Krakatua volcano emission	344		0, 589f, 592–593
kratochvilite	96	Lost City Methosarcinales	588, 5891
Kuhmo greenstone belt, Finl		low-field NMR	510-511
kutnohorite	22t, 26, 27	Luobusha ophiolite complex	19
kullohome	220, 20, 27	lysogenic viruses	650, 650f, 651t,
LA-ICPMS. See laser ablation	on inductively-	lysogenie viruses	658, 661
coupled plasma mass sp	•	lytic viruses	650f, 651t
Lactobacillus plantarum	631	lyde virases	0501, 051
Lactococcus lactis	631	M carbon	54, 541
Lake District, United Kingd		magic angle spinning (MAS) me	,
lakes, volcanic	332, 340	magma ocean	20)
Lambert Beer law	268–269	carbon cycle and	
lamellar lipids	623–628, 623f	after core formation	191-200
lamproites	358	during core formation	184–191, 1851
lamprophyres	358	equilibrium fractionation	
lanthanite group	31	between core and m	
laser ablation inductively-co		overview of	184 184
plasma mass spectromet	•	crystallization of and fate of	
prasma mass specificite	364, 366–367, 366f	interaction with atmosphere	
Late Veneer 16	3, 169, 196–198, 197f	ingassing of carbon	194–196, 195f
Law veneer 10	5, 107, 190-190, 1971	ingassing of carbon	194-190, 1931

Late Veneer addition of carbon to 197f
storage capacity of carbon in 191–194,
1921, 1931
magmas
carbon trapping in 172–173
as diamond carriers 358
original carbon dioxide content of 343–344
related to carbonate melts 310–311
as source of carbon in crust and
mantle fluids 111–112
terrestrial carbon inventory and 166–167
magnesite 21, 24, 65–66, 65f
magnesium 24, 365f, 366
magnesium/calcium ratio, skeletal
biomineralization and 95
magnesium carbonate 21, 24, 65–66, 65f
magnetite 478, 479, 480–482, 594
majorite 376, 385, 402
malachite 31, 90, 90f
manasseite 31
manganese carbonate 20f, 21, 24–26
mantle
abiotic hydrocarbon formation in 468–474
chemical and physical properties of
468, 468f, 469f
constraints on diamond growth in
369–376, 370f
convection in 199–200
deep upper to lower, storage in 216–219, 217f
depleted 166–167
equilibrium fractionation of carbon
between core and 185–189
estimated carbon content of 166–167
excess mantle carbon paradox and
188–191, 198–199
geology of carbon from
diamonds of 396–406
inefficient core formation and deep
carbon storage and 198–199
inefficient subduction of carbon in
Archean and Proterozoic and 203–209
locations of diamonds in 358–360, 363f
mineral evolution of 83–86
outgassing in ancient Earth and 201–203
overview of aqueous fluids of 109–110, 138
oxidized carbon in aqueous fluids
at high P and T 112–128
reduced carbon in aqueous fluids
at high P and T 128–138
siderophile elements in, carbon
in core and 243–245, 245f, 246f
sources of carbon in aqueous fluids of
110–112
mantle keels 360, 360f

Marianas Forearc	578t, 582, 591, 593
Mars	159, 163–165, 164f,
234	4–235, 235f, 237, 582
mass angle spinning (MAS)	
	498–499, 510, 510f,
	512–514, 513f, 514f
mass spectrometry	327
Mbuji Mayi, Zaire	364
MCFC (molten carbon fuel c	
melanophlogite	33
melt inclusion measurements	
	0, 201–203, 201f, 624
melts. See also carbonate me	
albite	312
basalt	253, 255f, 263f
C-O-H fluid/melt	356, 373–374,
	405f, 468-473, 469f,
	470f, 498-499
rhyolite 253,	255f, 262, 262f, 263f
membranes	622–632
Mendeleev, Dmitri	451
Mengyin kimberlite field	19
Mesoproterozoic Era	91, 92f
Mesozoic Era	96
meta-generalized gradient ap	
metabolism	¹ /10x1111at1011 48
	592 501
in serpentinite-hosted ec	
	595–596
in subsurface biosphere	560, 564,
	636–637, 636f
metadynamics, evolutionary	49
metagenomic analysis	
Bay of Islands Ophiolite	,
Newfoundland and	583
of deep microbial comm	unities 634–635
of deep viral communitie	es 660, 662–665,
	664t, 665f
defined	651t
Lost City Hydrothermal	Field and 593
Richmond Mine and	552
metal-silicate fractionation	
core carbon, siderophile	elements in
mantle and	232, 243–247
during core formation	185–191,
during core rormation	187f, 190f
metamorphism	1071, 1901
burial	131-136
carbon-bearing minerals	
impact shock	82-83
ingassing in modern Ear	
retrograde	4
as source of carbon in cr	
mantle fluids	111
metasomatism, carbonate me	elts and 309–310

metastability	
of carbonate phases in carbonate melts	292
of organic compounds in fluids of	
crust and mantle 12	29–131
overview of 51f, 52–54, 5	3f, 54f
metastable oxidants	564
meteorites. See also achondrites; chondrites	;
micrometeorites	
in accretion stage of evolution 81-	83, 81t
CI chondrites 153–15	4, 153t
cohenite and	18
composition of 2, 156–15	8, 157t
diamond, lonsdaleite and	13
mossainite and	17
organic matter in	158
6	52-163
primitive	150
methane	
abiogenic vs. biogenic	
	97–599
	49-450
cycling of in serpentinite settings	17 450
588–59	0 589f
	51-562
in deeper fluids of crust and mantle 13	
diamond formation from	379
equilibrium speciation in upper mantle	519
468–473, 469	f 470f
Fischer-Tropsch-type synthesis and	476,
	33, 486
hydrocarbon formation from	453
	29–131
magma ocean-atmosphere interaction a	
	94-196
	33-534
origins of deep hydrocarbons and	451
polymerization of in crust	487
in silicate glasses	274
	59–160
solubility in water 128–12	
5	59–460
as source of inorganic carbon in	
serpentinization zones	592
storage in clay minerals in sediments	
52	27-528
structure, bonding, and mineralogy of	61–63
volcanic emissions of	325
methane hydrates (methane ice)	
deep microbial communities and 50	51-562
deposition of, mineral evolution and	87
-	4f, 450
	59–460
	5t, 590
	5t, 590 65, 657

methanotrophs 6	533
MFI. See mordenite framework inverted	
microbial zombies 5	660
microdiamonds 3	376
micrometeorites 170–1	71
microorganisms. See also bacteria; Specific	
microorganisms	
burial metamorphism and 131, 134–1	36
pressure, biogeochemical cycles and	
632–637, 63	33f
1 15	85
Mid-Atlantic Ridge 579t, 5	582
	582
mid-ocean ridge basalt (MORB) 166, 1	68
mid-ocean ridges (MOR) 331–332, 34	40,
341t, 579f, 581–5	582
Milnesium tardigradum 638, 63	39f
Mimivirus 6	52
mineral evolution	
accretion stage of 81–83,	81t
biosphere development in 81t, 86-	-96
crust and mantle processing era in 81t, 83-	-86
overview of 79–81,	81t
plate tectonics and 85-	-86
unanswered questions about 96-	-97
mining, in situ 5	60
minrecordite 22t,	26
miscibility, of CO ₂ -H ₂ O 123–1	26
mixing, of CO_2 -H ₂ O 123–1	26
models	
chronditic Earth 1	50
constant-diversity 655–657, 65	56f
for fluid-rock interfaces 497, 515–5	
Grand Tack 159, 163–1	65,
164f, 1	
Murad-Gubbins 5	
Mulad-Oubbills 5	
	71
	.71 333 .59
Nice 1 oscillator 515–5	.71 333 .59
Nice 1 oscillator 515–5	.71 533 .59 516 241
Nice 1 oscillator 515–5 Preliminary Earth Reference (PREM) 2 solubility 256–259, 260–263, 20 Tse-Klein-McDonald 5	.71 533 .59 516 241 52f 533
Nice1oscillator515-5Preliminary Earth Reference (PREM)2solubility256-259, 260-263, 20Tse-Klein-McDonald5	71 533 59 516 241 52f
Nice 1 oscillator 515–5 Preliminary Earth Reference (PREM) 2 solubility 256–259, 260–263, 20 Tse-Klein-McDonald 5	.71 533 .59 516 241 52f 533 525
Nice1oscillator515-5Preliminary Earth Reference (PREM)2solubility256-259, 260-263, 20Tse-Klein-McDonald5VOLCALPUFF3	.71 533 .59 516 241 52f 533 525 14
Nice1oscillator515-5Preliminary Earth Reference (PREM)2solubility256-259, 260-263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13, 14-18, 1moissanite13, 14-18, 115t, 17f, 1	71 533 59 516 241 52f 533 525 14 4t, 99
Nice1oscillator515-5Preliminary Earth Reference (PREM)2solubility256-259, 260-263, 26Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14-18, 10	71 533 59 516 241 52f 533 525 14 4t, 99
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 115t, 17f, 1molar-tooth crystal structure92f,molar volume2	.71 533 .59 516 241 52f 533 525 14 4t, 99 93 280
Nice1oscillator515-5Preliminary Earth Reference (PREM)2solubility256-259, 260-263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14-18, 115t, 17f, 115t, 17f, 1molar-tooth crystal structure92f,	.71 533 .59 516 241 52f 533 525 14 4t, 99 93 280
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1	71 533 59 516 241 52f 533 525 14 4t, 99 93 280 599
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1molecular dynamics studies	71 533 59 516 241 52f 533 525 14 4t, 99 93 280 599
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1	71 533 59 516 241 52f 533 525 14 4t, 99 93 280 599
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1molecular dynamics studiesfor carbon dioxide diffusivity insilicate melts2	71 533 59 516 6241 62f 533 625 14 4t, 99 93 880 599 52
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1molecular dynamics studiesfor carbon dioxide diffusivity insilicate melts2dynamics of hydrocarbons in nanopores am	71 533 59 516 241 52f 533 525 14 4t, 99 93 280 52 282 d
Nice1oscillator515–5Preliminary Earth Reference (PREM)2solubility256–259, 260–263, 20Tse-Klein-McDonald5VOLCALPUFF3Moissan, Frederick-Henri13,moissanite13, 14–18, 115t, 17f, 1molar-tooth crystal structure92f,molecular biomarkers455–457, 558, 5molecular clouds80, 1molecular dynamics studiesfor carbon dioxide diffusivity insilicate melts2	71 533 59 516 241 52f 533 525 14 4t, 99 93 280 52 282 d

overview of 531–534 for solubility of carbon dioxide	
molybdenum 169, 243–245,	
245f, 246f, 247	
monocrystalline diamonds 357f, 358, 394	
monohydrocalcite 31	
Moon 163, 232	
MORB. See mid-ocean ridge basalt	
mordenite framework inverted (MFI) 508–509	
Moritella spp. 634	
Mountain Pass, California 31	
Mountsorrel, United Kingdom 458–459	
Mponeng Mine 556	
Mt. Pinatubo eruption 344	
mud volcanoes 582	
MultiGas approach to carbon efflux	
measurement 326	
Murad-Gubbins model 533	
muramic acid concentrations 558	
<i>Myoviridae</i> 651t, 652, 653f	
nanodiamonds 157	
nanopores. See fluid-rock interfaces	
nanoscale samples	
ex situ methods for analysis of	
electron diffraction 430	
electron energy loss spectroscopy	
431–435, 432f, 434f	
high-angle annular dark-field	
high-angle annular dark-field STEM 429, 429f	
STEM 429, 429f	
STEM 429, 429f high-resolution transmission electron	
STEM 429, 429f high-resolution transmission electron microscopy 429	
STEM429, 429fhigh-resolution transmission electron microscopy429near-edge structures431–432, 432f	
STEM429, 429fhigh-resolution transmission electronmicroscopynear-edge structures431–432, 432fscanning transmission electron	
STEM429, 429fhigh-resolution transmission electronmicroscopynear-edge structures431–432, 432fscanning transmission electronmicroscopy429	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-ray	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434f	
STEM429, 429fhigh-resolution transmission electronmicroscopynear-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy	
STEM429, 429fhigh-resolution transmission electron microscopy429near-edge structures431–432, 432fscanning transmission electron microscopy429scanning transmission X-ray microscopy433–435, 434ftransmission electron microscopy 428–430, 429f	
STEM429, 429fhigh-resolution transmission electron microscopy429near-edge structures431–432, 432fscanning transmission electron microscopy429scanning transmission X-ray microscopy433–435, 434ftransmission electron microscopy 428–430, 429fX-ray energy dispersive spectroscopy	
STEM429, 429fhigh-resolution transmission electronmicroscopynear-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431	
STEM 429, 429f high-resolution transmission electron microscopy 429 near-edge structures 431–432, 432f scanning transmission electron microscopy 429 scanning transmission X-ray microscopy 433–435, 434f transmission electron microscopy 428–430, 429f X-ray energy dispersive spectroscopy 430–431 sample preparation with FIB-SEM and	
STEM429, 429fhigh-resolution transmission electronmicroscopynear-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431	
STEM 429, 429f high-resolution transmission electron microscopy 429 near-edge structures 431–432, 432f scanning transmission electron microscopy 429 scanning transmission X-ray microscopy 433–435, 434f transmission electron microscopy 428–430, 429f X-ray energy dispersive spectroscopy 430–431 sample preparation with FIB-SEM and	
STEM 429, 429f high-resolution transmission electron microscopy 429 near-edge structures 431–432, 432f scanning transmission electron microscopy 429 scanning transmission X-ray microscopy 433–435, 434f transmission electron microscopy 428–430, 429f X-ray energy dispersive spectroscopy 430–431 sample preparation with FIB-SEM and 426–428, 427f, 428f	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426in situ methods for analysis of	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426 <i>in situ</i> methods for analysis ofX-ray computed tomography440–444,	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure andyray computed tomography440–444,441f, 442f, 444f	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426in situ methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426in situ methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis436–438, 437f, 438f	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426in situ methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis436–438, 437f, 438fX-ray Raman spectroscopy	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426 <i>in situ</i> methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis436–438, 437f, 438fX-ray Raman spectroscopy438–440, 439f	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426 <i>in situ</i> methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis436–438, 437f, 438fX-ray Raman spectroscopy438–440, 439fnanotubes, structure, bonding, and	
STEM429, 429fhigh-resolution transmission electronmicroscopy429near-edge structures431–432, 432fscanning transmission electronmicroscopy429scanning transmission X-raymicroscopy433–435, 434ftransmission electron microscopy428–430, 429fX-ray energy dispersive spectroscopy430–431sample preparation with FIB-SEM and426–428, 427f, 428fsample synthesis at high temperature andpressure and423–426 <i>in situ</i> methods for analysis ofX-ray computed tomography440–444,441f, 442f, 444fX-ray diffraction analysis436–438, 437f, 438fX-ray Raman spectroscopy438–440, 439f	

nanoXCT. See X-ray comp	outed tomogra	рпу
natrocarbonatite	302-2	303, 302t,
	306,	306t, 311
NBO/T parameter (degree	of polymeriza	tion)
1 00	•	273, 279f
near-edge structures (ELN		432, 432f
Neiva River	20) 101	19
nematodes		556
Neoarchean Era		89
		154
neon		134
neutron scattering		400
for analysis of C-O-H		498
dynamics of hydrocart		
	06–509, 509f	
for validation of simulation	ation prediction	
Nice model		159
NiFe-alloys	480, 482, 486	, 487, 597
<i>nifH</i> genes		593–594
niobium		304
niobocarbide		19
nitrogen		
depletion in bulk silica	te earth	169, 170f
in diamond		-364, 368,
	380-381,	
nitrogenase genes	,	590
niveolanite		85
NMR. See nuclear magneti	ic resonance	05
noble gases, mantle compo		166–167
North Pacific Gyre	sition and	634
nuclear magnetic resonance		
	498–499, 506	
	498–499, 300	
nuclear waste storage		561
nucleation	1.50	252, 594
nucleosynthesis, in stars	150-	-152, 150t
Nussusuaq peninsula		18
nutrient sources, in serpent	inite settings	
		593–594
nyerereite		30
Ocean Drilling Program (C	DDP)	548, 554
Ocean Drilling Program (Coceans	DDP)	548, 554
		548, 554 51t, 91–93
oceans		1t, 91–93
oceans intermediate magma	8 184–200, 1	1t, 91–93
oceans intermediate magma OCO. See Orbiting Carbon	8 184–200, 1 Observatory	81t, 91–93 185f, 187f
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o	8 184–200, 1 Observatory f	1t, 91–93
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P	8 184–200, 1 Observatory f rogram	31t, 91–93 185f, 187f 325
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o	8 184–200, 1 Observatory f Program	31t, 91–93 185f, 187f 325 30, 83,
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania	8 184–200, 1 Observatory f Program	31t, 91–93 185f, 187f 325 30, 83, 305, 306t
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth	8 184–200, 1 o Observatory f Program 1 290f,	11, 91–93 185f, 187f 325 30, 83, 305, 306t 160–161
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth	8 184–200, 1 Observatory f Program 290f, 367, 382,	 s1t, 91–93 s25 30, 83, 305, 306t 160–161 385–386,
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth olivines	8 184–200, 1 Observatory f rogram 290f, 367, 382, 386f.	31t, 91–93 85f, 187f 325 30, 83, 305, 306t 160–161 385–386, 482–483
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth	8 184–200, 1 Observatory f Program 290f, 367, 382, 386f, 14, 19,	31t, 91–93 85f, 187f 325 30, 83, 305, 306t 160–161 385–386, 482–483 577–579,
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth olivines ophiolites	8 184–200, 1 Observatory f Program 1 290f, 367, 382, 386f, 14, 19, 580–581t,	31t, 91–93 85f, 187f 325 30, 83, 305, 306t 160–161 385–386, 482–483 577–579, 588–590
oceans intermediate magma OCO. <i>See</i> Orbiting Carbon OCS, volcanic emissions o ODP. <i>See</i> Ocean Drilling P Oldoinyo Lengai, Tanzania oligarchic growth olivines	8 184–200, 1 Observatory f Program 1 290f, 367, 382, 386f, 14, 19, 580–581t,	31t, 91–93 85f, 187f 325 30, 83, 305, 306t 160–161 385–386, 482–483 577–579, 588–590

	O) 329
organic molecules. See also hydro	carbons
acids, in mantle and crust	135–136
burial metamorphism of	131–136
carbon minerals incorporating	32–34, 33t
in chondrites	158
mineral evolution and	96
overview of	32–34, 33t
organosulfur pathways for abiotic	
formation in crust	488–489
origins of life 8	6–89, 594–595,
	666–669, 668f
	383f, 384, 384f
oscillator model theory	. 515–516
outgassing. See also volcanic emis	
	1–203, 214–219
Outokumpu borehole, Finland	584
oxalates	33t, 96
oxidation. See also Great Oxidatio	
	2–128, 199–200
oxidation states. See also redox sy abiotic hydrocarbon formation	
crust and	474
carbonate melt stability and	289
diamond formation and	369
hydrocarbon origins and	458
overview of	-50
oxygen	89–90, 91, 94
oxygen fugacities	0, ,,,,,,,
	ormation and
in cratonic mantle, diamond for	
in cratonic mantle, diamond fo 369-	ormation and -371, 370f, 401f 202–203
in cratonic mantle, diamond fo 369- depth vs.	-371, 370f, 401f 202–203
in cratonic mantle, diamond fo 369-	-371, 370f, 401f 202–203
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia	-371, 370f, 401f 202–203 amond
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and	-371, 370f, 401f 202–203 mond 375, 401f 468
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle	-371, 370f, 401f 202–203 mond 375, 401f 468
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusio	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reaction	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reaction pegmatites	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reaction pegmatites pelagic marine microorganisms	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides percolative fractionation	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628 393
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides percolative fractionation peridotic melts	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides percolative fractionation peridotic melts peridotites	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628 393 282
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides percolative fractionation peridotic melts peridotites as diamond carriers	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628 393 282 358, 385
in cratonic mantle, diamond fo 369- depth vs. in sub-lithospheric mantle, dia formation and of upper mantle oxygen isotopes, diamond inclusic PAH. <i>See</i> polycyclic aromatic hyd palladium/silver ratio, of silicate E Pangea, impacts of break-up of panspermia parasites 31 partition function PCR. <i>See</i> polymerase chain reactio pegmatites pelagic marine microorganisms pentlandite peptides percolative fractionation peridotic melts peridotites	-371, 370f, 401f 202–203 mond 375, 401f 468 ons and 396 rocarbons arth 233, 235 213 639 , 667–669, 668f 48–49 on 81t, 85, 112 552 482 598, 626–628 393 282

fibrous diamonds and	366
isotopic composition of d	iamonds with
	377f, 379–380,
	379f, 381f
oxygen fugacity and diam	ond formation in
<i>,,,,,,,,,,,,,</i>	371-372
serpentinization and	577
syngenesis and	367
permafrost thawing	549
permeability, effect of loading	
perovskite	376
PF. See polar flagellum cluster	
PFG-NMR. See pulsed field g	
phages	557, 652, 657–658
Phalaborwa carbonatite	300
Phanerozoic Eon	96, 208, 213
phase transitions	
constraints on core carbon	
	238–239, 246–247
of hydrocarbons in nanop	
	522–524, 524f
lipids and	623–626, 625f,
	627f, 628f, 629f
protein unfolding and	616-620
phases of carbon	
fullerenes	54–55
metastable	51f, 52–54, 53f, 54f
stable	49-52, 50f, 51f, 52f
ultrahigh-pressure	55
phenotype switching	662
phonolite glass	276
phosphate pumps	594
phosphates	596
phosphatidylcholines	623, 624, 625f
	023, 024, 0251 16t
phosphides	594, 597
phosphorous	· · · ·
photoautotrophs, evolution of	
Photobacterium spp.	631, 634–635
photosynthesis	89–91, 658
piezophilic bacteria	632–635
Pilbara Craton	208
planetary cycles, annual	565
planetary embryos	160–161
planetesimals	81-82, 160-161,
	163, 170–171
planets, formation of	160-162
plate tectonics. See also tector	nics
and carbon cycling in sub	duction zones 4-5
in crust and mantle evolution	tion 81t, 85–86
diamond formation and	361, 396-401, 401f
hydrocarbon origins and	457
interaction of subducted v	
metallic core and	212
mantle differentiation and	
subsurface microbes and	565
subsurface microbes and	505

plumes, volcanic	
airborne measurements of	328-329
constraints on measuring carb	
dioxide in	324–325
ground-based measurements of	
space-based measurements of	
submarine measurements of	331-332
PMF. <i>See</i> proton motive force	001 002
pmoA genes	588
Podoviridae	651t, 652, 653f
polar flagellum cluster (PF)	635
polycrystalline diamonds	356–358, 357f,
F))	368, 376, 377f
polycyclic aromatic hydrocarbons	
porjejene aromane njaroearoons	159–160
polymerase chain reaction (PCR)	555
polymerization	272–273, 279f,
polymerication	472–473, 487
polypeptides. See also proteins	608–609
polyunsaturated fatty acids (PUFA	
Popigai impact crater	359
pores. See fluid-rock interfaces	557
Precambrian Era	208-209
Precambrian shields	582
Preliminary Earth Reference Mod	
Tremmary Data Reference mou	241
PREM. See Preliminary Earth Ref	
pressure. See also phase transition	
acquisition of resistance to	637–639
carbon dioxide solubility in si	
melts and	253–255
carbonatites at high	311-312
density as function of	239–240, 239f
diamond inclusions and	382–386
Fe-C phase diagram and	238–239, 239f
hydrocarbon formation and	453-454
lipids and cell membranes and	
inplus and con monoralles and	622–632, 624f
metastability and	52
microbiology, biogeochemica	
intercenciegy, enegeteenenieu	632–637
nucleic acids and	620–622
proteins and polypeptides and	
ultrahigh, carbon phases at	55
pressure-temperature stability field	
primary carbonatites	296–297
primary igneous carbonatite	305, 307f
primordial origins of carbon	2.00,00,1
carbon in universe and	150–159, 150f
carbon trapping in Earth and	172–173
cosmic dust as source of terre	
volatiles and	170–171
nature of Earth's building blog	
overview of	150–151
recycled carbon vs.	212-213
	_12 _13

solar system dynamics and	159–165
terrestrial carbon inventory and	165–168
timing of volatile delivery and rete	ntion and
	171-172
volatile elemental and isotopic cor	istraints on
	168–169
Prochlorococcus spp.	658
propane, pore fluid densities and	501-502
prophage	658
proteins	
effects of pressure on	
	, 614f, 616f
multimers and aggregates	612-613
<i>P</i> - <i>T</i> phase diagrams and	616-620
	-612, 613f,
616–620	,,
stability of	598
structures of	608-609
	0-611, 612
volume vs. compressibility and	609-610
Proterozoic Era, inefficient subduction	
	3–209, 204f
protogenic inclusions	386–388
protogenie inclusions protomolecule assembly	454
proton motive force (PMF)	591, 592f
protoplanetary disks	159–161
	59–160, 168
Pseudomonas aeruginosa	661
	632
Psychromonas sp. CNPT-3	634
<i>Psychromonas</i> spp.	
psychrophilic/psychrotolerant bacteria Puerto Rico Trench	634
	034
PUFA. See polyunsaturated fatty acids	
pulsed field gradient NMR (PFG-NMF	
	-515, 511f,
	f, 513f, 534
push-pull tests	552
Putorana Plateau, Siberia	18
Pyrococcus spp.	634
pyrolite	56f
pyrolysis experiments	454
pyroxenes	382
pyrrhotite	374
QENS. See quasielastic neutron scatter	0
quartz, solubility in CO ₂ -H ₂ O fluids	127
quasielastic neutron scattering (QENS)	
	–509, 509f,
51	4–515, 534
qusongite	19
radiolytic splitting	564
Rainbow vent field 577, 579t, 58	
Rangwa Caldera Complex, Kenya	311

rare earth elements (REE)		r
carbonatitites and	31, 302, 302t,	R
	304f, 305t	R
in diamond inclusions	390–393, 392f	r
fibrous diamonds and	367	
rarefaction curves	664–665, 665f	R
Rayleigh isotopic fractionation	236-237	R
Rayleigh-Taylor instabilities	211	R
RecA protein	622	n
recombinases	663–664, 664t	
recombination	651t, 653	S
recycling		S
continent assembly, plate to	ectonics and	S
	96–401, 397f, 398f,	S
	399f, 400f, 401f	S
of crustal carbon	200	S
in modern Earth	209–213, 210f	S
primordial carbon vs.	404-406	S
red giant branch (RGB) stars	151	s
redox melting	402-403	
redox systems	402 409	S
reduced conditions. See also ox		
reduced conditions. See uso of	128–138, 263–266	S
reduction hypothesis	120 130, 203 200 667	
REE. See rare earth elements	007	S
refuge, deep biosphere as	562	S
remediation	550, 560-561	5
remnant pressure	385	S
reproduction	559	5
	385	
residual pressure	559, 564	S
respiration	559, 504	s S
retrograde metamorphism, lack of research on	4	
		S
reverse tricarboxylic acid (rTC.		S
RGB stars. See red giant branch		
rhenium-osmium isotopic datin Rhizobiales	•	
	633	
Rhizobium radiobacter	661	
<i>Rhodobacter</i> spp.	657	
rhodochrosite	20f, 21, 24–26	
<i>Rhodococcus</i> spp.	639	
rhombohedral carbonates	92.00	
mineral evolution and	83, 96	
	7, 20f, 21f, 22t, 23t	
rhyolite melts	253, 255f, 262,	
	262f, 263f	
Richmond Mine	552, 556	
Rifle uranium mill, Colorado	563	
rift volcanoes, as source of	224 2246	
carbon dioxide	324, 324f	
RNA (ribonucleic acid)	591, 596–597,	
D11.	620–622, 667–669	
RNA viruses	652	
RNA world theory	596–597	
Rodinia supercontinent	91	S

roll front development	549
Roseobacter sp.	634
RpoE sigma factor	634
rTCA cycle. See reverse tricarboxylic	
acid cycle	
RuBisCO	593
Rudiviridae	653f, 662
Russian-Ukrainian School	451
ruthenium	169
Sabatier-type reactions	597, 598
Saccharomyces cerevisae	637
salt, DNA and	621
Samail ophiolite, Sultanate of Oman	577-578
SANS. See small-angle neutron scattering	ng
Santa Rita, New Mexico	112
satellite imagery	327-328
	, 164–165
scanning electron microscopy (SEM)	
367, 426–428,	427f. 428f
scanning transmission electron microsco	
(STEM)	429
scanning transmission X-ray microscopy	(STXM)
433–435, 434f	(~~)
· · · · · · · · · · · · · · · · · · ·	551t, 563
secondary ion mass spectroscopy (SIMS	
	-253.364
sedimentation as source of carbon in	200,000
crust and mantle fluids	110-111
seismic activity	549, 565
self-replicating networks	667
SEM. See scanning electron microscopy	
	, 531, 561
serpentinization	, 551, 501
abiotic carbon cycle-biogeochemist	m v
	, 597–600
abiotic hydrocarbon formation in cr	
475, 478–	
	. 486–487
biological consequences in ecosyste	,
challenges of high pH	591
limitations to carbon fixation	591-593
metabolic strategies	583-591
microbe-mineral interactions	585-591
	593-594
nutrient sources	549f
biosphere and ingassing in modern Earth and	211
locations of occurrence	577-583,
	580–581t
mineral evolution and	
	84
origins of life and	594–597
physical and chemical consequence	
	-576, 576f
	-
zones of SeSe kimberlite, Zimbabwe	3 395

SFG. See sum-frequency generation shale 454-455 shale gas 460, 495 Shewanella spp. 634, 635, 637-638 shock conditions 639 shock metamorphism 82-83 SiC. See iron silicides siderite-ankerite deposition 87 siderites 21, 26, 84, 87, 487-488 siderophile elements carbon addition by Late Veneer and 196-198, 197f fractionation of between mantle and core 232, 243-247 fractionation of between mantle and core during core formation 185-191, 187f, 190f Sierra Leone 364 Siilinjarvi, Finland 300 silica 127-128, 232-233 501-502, 502f, 504 silica aerogels silica-based pores 528-531 silicate carbonates 66-69, 69f silicate glasses 269f, 270f, 272, 274 silicate melts carbon solubility in 192-194, 192f, 193f, 251-266, 254t 266-277 carbon speciation in 251, 282 overview of physical properties of 277-282 silicates 185–191, 187f, 190f. 507 silicon carbide 13, 14–18, 14t, 15t, 17f, 199 Siljiin Ring Complex, Sweden 458 silver 233, 235 SIMS. See secondary ion mass spectroscopy simulations 515-534, 553 single-crystal X-ray diffraction analysis, diamond inclusions and 368.385 single-stranded DNA (ssDNA) viruses 652 651t, 652, 653f Siphoviridae Slave Craton, Canada 311, 378 small-angle neutron scattering (SANS) 504-505, 504f, 535 smectites 527 smithsonite 21.26 snow line 159, 160, 170-171 snowball Earth 81t, 93-94 sodium chloride dependence of carbonate solubility on 116-118,117f dependence of CO2-H2O miscibility on 124-126

dependence of of CO2-H2O miscibility on 124f. 125f solubility of methane and carbon monoxide in water and 129 2, 152, 159-165, 168, 452 solar system solar wind 153, 154, 168 solid-ordered phase 623 solubility of C-O-H fluids under reduced conditions in silicate melts 263-266, 265f, 266f of carbon dioxide in anhydrous silicate melts 251-259 of carbon dioxide in hydrous silicate melts 259-263, 261f, 262f of carbon in silicate melts 254t of carbon in silicate melts at core-forming conditions 192-194, 192f, 193f of graphite in crust and mantle 110, 111, 136-167, 136f of methane and carbon monoxide in water 128-129, 128f of minerals in CO2-H2O fluids 126 - 128modeling 256-263, 262f of oxidized carbon in dilute aqueous solutions 118-122 soluble organic matter (SOM) 158 Songliao Basin, China 459 soot line 160, 170-171 497, 499-506, 519-522 sorption Soufrière Hill volcano, Montserrat 344 sound velocity measurements 241-243, 242f Southwest Indian Ridge 582, 590 specialized transduction 657-658 speciation. See also equilibrium speciation 118-119, 266-277, 325 spectroscopic analysis carbon K-edge 438 of carbon speciation in silicate melts 266-270 of carbonate glasses 295, 296f, 297t Fourier transform infrared (FTIR) for carbon dioxide diffusivity in silicate melts 280-282, 281t for carbon speciation in silicate melts 276, 277f, 278f, 279f for measurement of volcanic carbon dioxide emissions 326-327 for solubility of carbon dioxide in silicate melts 252-253 for validation of simulation predictions 534 infrared for carbon speciation in silicate melts 266-269, 267f, 267t, 268f, 268t, 269f, 270f, 271t

of carbonate glasses 295, 296f, 297	t
for measurement of volcanic carbon	
dioxide emissions 326–32	7
for solubility of carbon dioxide in silicate	е
melts 252–253	
isotope ratio mass (IRMS) 364	4
microRaman 38	5
NMR 269, 272	f
secondary ion (SIMS) 252–253, 364	
for validation of simulation predictions 53	
X-ray energy dispersive (XEDS) 430–43	
X-ray Raman (XRS) 424, 438–440, 439	
spontaneous polymerization 472–473	
spores 55	
Sputnik virus 652	
ssDNA viruses. See single-stranded DNA viruses	
-	
Stardust mission 154–155, 15	
stars 80, 150–152	
Steelmaking data sourcebook 243–244	
stellar envelopes 1.	3
STEM. See scanning transmission electron	
microscopy	
Stichtite 20	
strain birefringence analysis 38:	
stromatolites 89	
Stromboli volcano 34	4
	4
Strong, Herbert 1.	
Strong, Herbert 1: strontianite 27, 22	3
	3
strontianite 27, 2	3
strontianite 27, 24 STXM. <i>See</i> scanning transmission X-ray	3
strontianite 27, 28 STXM. See scanning transmission X-ray microscopy	3
strontianite 27, 28 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep	3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction	3
strontianite 27, 28 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds	3 8
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34	3 8 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 549	3 8 3 9
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 549 carbon flux into Earth's mantle through 2, 4	3 8 3 9 4
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 405	3 8 3 9 4
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 401 inefficient, in Archean and Proterozoic	3 8 3 9 4 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 401 inefficient, in Archean and Proterozoic 203–209, 204	3 8 3 9 4 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 401 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–87	3 8 3 9 4 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–87 precipitation of atmospheric carbon	3 8 3 9 4 3 4 7
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–34 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 401 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–8° precipitation of atmospheric carbon dioxide through 175	3 8 3 9 4 3 4 7
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–8° precipitation of atmospheric carbon dioxide through 177 subduction zones	3 8 3 9 4 3 4 7 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–8° precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332	3 8 3 9 4 3 4 7 3
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–8° precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern	3 8 3 9 4 3 4 7 3 2
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–8° precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern Earth and 209–212, 210	3 8 3 9 4 3 4 7 3 2 0 f
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–86 precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern Earth and 209–212, 210 plate tectonics and carbon cycling in 4–3	38 3943 47 30f5
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–87 precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern Earth and 209–212, 210 plate tectonics and carbon cycling in 4–4 serpentinization and 582	38 3943 47 30f5
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–86 precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern Earth and 209–212, 210 plate tectonics and carbon cycling in 4–4 serpentinization and 582 as source of carbon in crust and	3 8 3 9 4 3 if 7 3 2 of 5 2
strontianite 27, 24 STXM. See scanning transmission X-ray microscopy sub-lithospheric diamonds. See superdeep diamonds subduction balancing with volcanic emissions 324f, 342–342 biosphere and 544 carbon flux into Earth's mantle through 2, 4 diamond formation and 396–401, 401f, 402 inefficient, in Archean and Proterozoic 203–209, 204 mineral evolution and 86–87 precipitation of atmospheric carbon dioxide through 177 subduction zones carbon dioxide emissions in 331–332 ingassing in modern Earth and 209–212, 210 plate tectonics and carbon cycling in 4–4 serpentinization and 582	3 8 3 9 4 3 if 7 3 2 of 5 2 0

sulfate reducers	585–586, 633, 634
sulfides	
abiotic hydrocarbon form	nation in
crust and	488-489
diamond dating and	394–395
diamond formation and	374
diamond inclusions and	390, 397f,
	398–399
Sulfolobus spp.	654
sulfur	
in core	233
cycling of in serpentinite	settings 585–586
isotopes	396
partitioning of W and Mo	between mantle
and core and	245, 245f, 246f, 247
sulfur dioxide, measurement	of geological
carbon efflux and	325-327
sum-frequency generation (S	FG) 534
Sun, composition of	152-154, 153t, 154f
SUPCRT92 program	119-120, 122
supercontinent formation	208-209
superdeep (sub-lithospheric)	diamonds
dating of	395
deep carbon cycling with	mantle
convection and	402-403
distribution of	359
formation of	375–381, 377f,
	379f, 381f
isotopic composition of	377f
mineral inclusions in	390, 391t
nano-inclusions in	368
texture of	369
superhard graphite	54
Suzuki, Keizo	611
syenite-granite (SG)	84-85
synchysite	31
Synechococcus spp.	658
syngenetic inclusions	386–388, 387f
syntrophy	651t
synuophy	0511
Tablelands Complex, Newfor	indland 583, 593
Tambora volcano eruption	344
Tanco pegmatite	85
tantalocarbide	19
tar line	160
tectonics. See also plate tecto	
diffusive degassing of de	
dioxide and	330–331
inefficient subduction of	
and Proterozoic and	203–209, 204f
measurements of carbon	
measurements of carbon	332, 339t, 342
Tekirova ophiolites, Turkey	578, 581t
TEM. See transmission electr	
TENT. See transmission electr	on meroscopy

temperature. See also phase tran	sitions	trigonal coordination	47, 63–64
carbon dioxide solubility in		trilobites, phacopid	94–95, 95f
silicate melts and	255	TSE. See transition state ensemble	e
carbon speciation in silicate	melts and	Tse-Klein-McDonald model	533
	4–276, 275f, 279f	TTG. See tonalite-trondhjemite-gr	ranodiorite
diamond inclusions and	382-386	tungsten, partitioning of	243–245, 245f,
lipid volume and	624f		246f, 247
lipids and	623-624, 629	type 2 migration	161
metastability and	52-53	<i>y</i> 1 <i>C</i>	
protein unfolding and	611–612	UAV. See unmanned aerial vehicle	es
sample synthesis in diamon		UHPM (ultra-high-pressure metar	
anvil cells and	424-425	diamonds	359–360, 361
ternary diagrams	136–137, 136f	universe, overview of carbon in	150–159, 150f
terrestrial carbon inventory	149, 165–168	unmanned aerial vehicles (UAV)	329
tetracarbonates	312	ur-minerals	80, 81t
tetrahedral coordination	47, 53–54,	Ural Mountains, Russia	19
tetranedrai eoordination	54f, 64–66	Uranium-lead dating	395
Thaumarchaea	633	uranyl carbonates	31
thermal decomposition	487-488	ureilites	156
	487–488 32–385, 383f, 384f	uricite	96
	2–363, 3631, 3641	unche	90
thermodynamics	507 509	volania anid	125
abiogenesis and	597–598	valeric acid	135
for calculation of hydrocarb	-	Vanuatu island chain	341
	456-457	vapor-liquid equilibria	519–522, 521f
of carbon dioxide solubility		vaterite	29, 29f
silicate melts	253-254	Venetia kimberlite	394–395
of oxidized carbon in dilute	aqueous solutions		1–235, 235f, 237
118–122		Vibrio cholerae	631, 658
1 0	10, 614–618, 614f	viral shunt	655, 656f
subsurface microbes and	564–565	virus first hypothesis	667
Thiomicrospira crunogena	586t, 588	virus-like RNA molecules	667–669
tholeiites	193	viruses	
tidal forces	565	in deep biosphere	556–557
Titan	96	deep subsurface biosphere an	d
tonalite-trondhjemite-granodior	ite (TTG) 84	deep sediments	660–661
tongbaite	19	hydrologically active regi	ions
ToxR	631		658–660, 659f
trace elements 3	03, 390–394, 392f	metagenomic analysis of	
tracer gases	327	662	–665, 664t, 665f
transduction 65	51t, 656f, 657–658	surface-attached commur	nities 661–662
transition state ensemble (TSE)	615	genetic diversity of	654
transition zone		hydrothermal vents and	666-667
boundary with lower mantle	e 47	impacts on host ecology and	evolution
diamonds from	403	1 00	654–658, 656f
diamonds in 36	64, 375–378, 377f,	life cycles of	650–652,
	381, 385, 391t,	5	650f, 651t
	402-403	origins of life and	667–669, 668f
microorganisms of	585	overview of	649–650,
modern carbon storage and	214–220, 218f		669–670
silicate melts and	252	sizes and morphologies of	652–653, 653f
transmission electron microscop		terminology of	651t
-	68, 428–430, 429f	viscosity	277-280
transposases	663–664, 664t	volatile elements	211-200
trapping	172–173	cosmic dust as source of	170-171
11 0	577	in cosmochemical ancestors	150, 154–155
travertine, serpentinization and	577	in cosmochennical ancestors	150, 154–155

formation of solar system and isotopic and elemental constra	159–165 ints of 168–169	
nature of Earth's building bloc		
hatare of Earth's building bloe	169–170, 170f	
timing of delivery and retentio		W
tilling of derivery and retentio	171–172, 172f	w
VOLCALPUFF model	325	W
volcanic emissions	525	W
	aubduction	
balancing with weathering and		w W
	342–343	
comparisons to previous estim		W
subaerial carbon dioxide f	,	W
diamond eruption and	359	W
global deep carbon emission ra		W
	340–342, 341t	W
magnitude of	344–345	W
methods for measuring geolog		Ŵ
dioxide fluxes and	325-332	W
overview of	345-346	W
reported measurements of deep	p carbon fluxes	
from 332-	-340, 333–336t,	Х
337t, 1	338t, 339t, 341t	Х
role of in geological carbon cy	cle	
	323–325, 324f	Х
subaerial 324–325	5, 332–340, 342	Х
submarine	340, 341t	
volcanic lakes	332, 340	
volcanism	002,010	v
	-208 324 324f	Х
	-208, 324, 324f,	
arc 207-	331–332, 340	Х
arc 207- biosphere and		Х
arc 207- biosphere and plumes	331–332, 340 549, 549f	X X
arc 207- biosphere and plumes airborne measurements of	331–332, 340 549, 549f 328–329	Х
arc 207- biosphere and plumes airborne measurements of constraints on measuring of	331–332, 340 549, 549f 328–329 carbon	X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in	331–332, 340 549, 549f 328–329	X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based	331–332, 340 549, 549f 328–329 earbon 324–325	X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of	331–332, 340 549, 549f 328–329 earbon 324–325 325–327	X X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement	331–332, 340 549, 549f 328–329 carbon 324–325 325–327 s of 329	X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements	331–332, 340 549, 549f 328–329 carbon 324–325 325–327 s of 329 of 331–332	X X X X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344	X X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582	X X X X X X X X
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582	X X X X X X X X X Y
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582	X X X X X X X X X X Y Y
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurements submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d	X X X X X X X X X X Y Y
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurements submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d	X X X X X X X X X X Y Y Y
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurements submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112	X X X X X X X X X X Y Y Y Y Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f	X X X X X X X X X X Y Y Y Y Y Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488	X X X X X X X X X X X Y Y Y Y Y Y Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurements submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554,	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of metallic core and	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561 212	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of metallic core and water maximum	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561 212 372	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of metallic core and water maximum Wawa, Ontario	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561 212	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of metallic core and water maximum Wawa, Ontario weathering	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561 212 372 358	X X X X X X X X X X X X Y Y Y Z Z Z Z Z
arc 207- biosphere and plumes airborne measurements of constraints on measuring of dioxide in ground-based measurements of space-based measurement submarine measurements role of deep carbon in serpentinization and as source of carbon in crust an mantle fluids W carbon Wächtershäuser, Gunther waste repositories water, subducted, interaction of metallic core and water maximum Wawa, Ontario	331–332, 340 549, 549f 328–329 carbon 324–325 s of 329 of 331–332 343–344 582 d 111–112 54f 488 550, 553–554, 560–561 212 372 358	X X X X X X X X X X X X Y Y Y Z Z Z Z Z

plate tectonics, mineral evolution as sink for geological carbon	323, 324	
as source of carbon in crust and mantle fluids		
	111	
websterites	388–390, 389t	
weddellite	32	
Wentorf, Robert	13	
Western Gneiss terrane, Norway	359	
white dwarfs	151	
Wild 2 comet	154	
Wilson Cycle	200–219, 396	
witherite	27, 28	
Witwatersrand Basin	556	
WM buffer. See wustite- magnetite		
Wöhler synthesis	452	
Wolf-Rayet (WR) stars	151-152	
Wood-Ljungdahl pathway	596	
wüstite	374–375	
wustite- magnetite (WM) buffer	468-470	
X carbon	54, 54f	
X-ray computed tomography (XCT		
	41f, 442f, 444f	
X-ray crystallography	622	
X-ray diffraction (XRD) studies		
424, 436–4	438, 437f, 438f	
X-ray energy dispersive spectroscop (XEDS)	ру 430–431	
X-ray Raman spectroscopy (XRS)	438–440, 439f	
XCT. See X-ray computed tomography		
XEDS. See X-ray energy dispersive		
spectroscopy		
1 10	171	
xenon Xenon-HL	171	
	157	
xenon paradox		
XRS. See X-ray Raman spectroscop	by	
Y carbon	54, 54f	
yarlongite	19	
yimengite	395	
Zaarbar	54, 54f	
Z carbon		
zabuyelite	578 5814	
Zambales ophiolite, Philippines	578, 581t	
zemkorite	30	
zeolites		
alkanes in silica-based porous		
materials and	528-531	
dynamics of hydrocarbons in na		
	08, 507f, 508t,	
	516–517, 517f	
hydrocarbons in nanopores and		
Zimbabwe craton 3	399, 399f, 400f	

zircon	84, 395
ZoBell, Claude	548
zombies, microbial	560
Zygosaccharomyces bailii	639