Acentric structure (P3) of bechererite, $Zn_7Cu(OH)_{13}[SiO(OH)_3SO_4]$

CHRISTINA HOFFMANN,¹ THOMAS ARMBRUSTER,¹ AND GERALD GIESTER²

¹Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3. CH-3012 Bern, Switzerland

²Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria

Abstract

The crystal structure of bechererite from the Tonopah-Belmont mine, Arizona, was reinvestigated using a single-crystal X-ray diffractometer (MoK α radiation) equipped with a CCD area detector. The structure was refined in space group P3 (a = 8.319(2), c = 7.377(1) Å) with 1247 unique reflections up to $(\sin\theta)/\lambda = 0.65$ leading to R1 = 2.7%, wR2 = 6.4%. In agreement with the previously reported centric structure ($P\overline{3}$), bechererite is composed of (001) brucite-like sheets formed by edge-sharing (Zn,Cu)O₆ octahedra and $\frac{1}{7}$ ordered octahedral vacancies. The layers are connected parallel to c by ditetrahedral (Zn,Cu)₂(OH)₇ units. Due to the attractive force of a weak hydrogen bond, the bridging O atom of the ditetrahedral unit is displaced from the threefold axis. A characteristic feature of the structure is isolated tetrahedra, which connect only with one apex to the octahedral sheet. The acentric structure (P3) reveals ordering between SiO(OH)₃ and SO₄ tetrahedra yielding characteristic distortions of the neighboring (Zn,Cu)O₆ octahedra caused by bondvalence requirements of the shared O atoms. The [SiO(OH)₃]¹⁻ tetrahedron is only 70(1)% occupied and is partly substituted by tetrahedral [O₄H₇]¹⁻ clusters. The existence of H₂O molecules in the [O₄H₇]¹⁻ cluster is supported by FTIR spectroscopy.