Structure and dynamics of protonated Mg₂SiO₄: An ab-initio molecular dynamics study

MICHAEL HAIBER, PIETRO BALLONE, AND MICHELE PARRINELLO

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Abstract

We studied structural and dynamical properties of H⁺ absorbed in Mg₂SiO₄ by ab-initio molecular dynamics. We first calculated the T = 0 equation of state of pure forsterite as a function of pressure, and we determined the relative stabilities of the olivine, β -spinel, and spinel polymorphs. The results show that the ab-initio model successfully reproduces the known structural properties of the system. In the protonated phases, in agreement with experimental evidence, our computations show that H⁺ is absorbed preferentially in the β -spinel phase. The most stable absorption site is located close to the O1 atom, which is coordinated by five Mg²⁺ cations and not directly bound to Si. In addition to this stable absorption site, the computation reveals other low-energy positions, forming an extended network of hydrogen bonds, that could play an important role in the diffusion of H⁺ in β -spinel. We analyze the dependence of structure and dynamics of the pure and protonated phases as a function of temperature and pressure.