Structural mechanism of Co²⁺ oxidation by the phyllomanganate buserite

Alain Manceau,^{1,*} Victor A. Drits,² Ewen Silvester,^{1,†} Céline Bartoli,¹ and Bruno Lanson¹

¹Environmental Geochemistry Group, LGIT-IRIGM, University of Grenoble and CNRS, 38041 Grenoble Cedex 9, France ²Geological Institute of the Russian Academy of Sciences, 7 Pyzhevsky street, 109017 Moscow, Russia

ABSTRACT

The geochemistry of Co at the Earth's surface is closely associated with that of manganese oxides. This geochemical association results from the oxidation of highly soluble Co²⁺ to weakly soluble Co³⁺ species, coupled with the reduction of Mn⁴⁺ or Mn³⁺ ions, initially present in the manganese oxide sorbent, to soluble Mn²⁺. The structural mechanism of this Co immobilization-manganese oxide dissolution reaction was investigated at the buserite surface. Co-sorbed samples were prepared at different surface coverages by equilibrating a Na-exchanged buserite suspension in the presence of aqueous Co^{2+} at pH 4. The structure of Co-sorbed birnessite obtained by drying buserite samples was determined by X-ray diffraction (XRD) and powder and polarized EXAFS spectroscopy. For each sample we determined the proportion of interlayer cations and layer vacancy sites, the $Co^{2+}/(Co^{2+} + Co^{3+})$ ratio, the nature of Co sorption crystallographic sites, and the proportion of interlayer vs. layer Co. From this in-depth structural characterization two distinct oxidation mechanisms were identified that occur concurrently with the transformation of low pH monoclinic buserite to hexagonal H-rich birnessite (Drits et al. 1997; Silvester et al. 1997). The first mechanism is associated with the fast disproportionation of layer $Mn^{_{3+}}$ according to $2Mn^{_{3+}}_{_{layer}} \rightarrow Mn^{_{4+}}_{_{layer}} + \square_{_{layer}} + Mn^{_{2+}}_{_{solution}}$, where \square denotes a vacant site. Divalent Co sorbs above or below a vacant site (\Box_1) and is then oxidized by the nearest $Mn_{iayer}^{_{3+}}$. The resulting $Co^{_{3+}}$ species fills the \Box_i position while the reduced Mn migrates to the interlayer or into solution creating a new vacant site (\square_2). This reaction can be written: $Co_{solution}^{2+} + \Box_1 + Mn_{layer}^{3+} \rightarrow Co_{interlayer}^{2+} + \Box_1 + Mn_{layer}^{3+} \rightarrow Co_{interlayer}^{3+} + \Box_1 + Mn_{layer}^{2+} \rightarrow Co_{interlayer}^{3+} + \Box_2 + Mn_{sol/inter}^{2+}$. This mechanism may replicate along a Mn³⁺-rich row, and, because the density of vacancies remains constant, it can result in relatively high Co concentrations, as well as domains rich in Co_{laver}-Mn⁴⁺_{laver}. During the low-pH buserite transformation, about one-half of the layer Mn³⁺ that does not disproportionate migrates from the layer to the interlayer space creating new vacancies, with the displaced Mn³⁺ residing above or below these vacancies. The second oxidation mechanism involves the replacement of Mn³⁺_{interlayer} by Co³⁺_{interlayer}; the latter may eventually migrate into layer vacancies depending on the chemical composition of octahedra surrounding the vacancy. The criterion for the migration of Co³⁺ into layer vacancies is the need to avoid Mn_{layer}^{3+} - Co_{layer}^{3+} - Mn_{layer}^{3+} sequences. The suite of chemical reactions for this second mechanism can be schematically written: $Co_{solution}^{2+}$ + $Mn_{interlayer}^{3+}$ + $\Box \rightarrow Mn_{solution}^{2+}$ + $Co_{interlayer}^{3+}$ + $\Box \rightarrow Mn_{solution}^{2+}$ + Co_{layer}^{3+} , the last step being conditional. In contrast to the first mechanism, this second mechanism decreases the density of vacant sites. At high surface coverage, Co-sorbed birnessite contains a substantial amount of unoxidized Co2+ cies despite some non-reduced Mn³⁺ in the sorbent. This result can be explained by the sorption of Co_{solution} onto vacant sites located in Co_{layer}- and Mn⁴⁺_{layer}-rich domains devoid of Mn³⁺. The number and size of these domains increase with the extent of oxidation and the total Co concentration in the solution, and this accounts for the decreasing capacity of buserite to oxidize Co. The weight of structural evidence indicates that Co is oxidized by Mn³⁺ rather than Mn⁴⁺. Thermodynamic considerations indicate that under the solution pH conditions employed in this study Mn³⁺ is the more likely electron sink for the oxidation of Co²⁺. This study also shows that the high affinity of Co for man-

0003-004X/97/1112-1150\$05.00

^{*} Alain.Manceau@obs.ujf-grenoble.fr

[†] Present address: CSIRO, Division of Minerals, Box 312, Clayton South Victoria, Australia, 3169.

MANCEAU ET AL.: Co OXIDATION BY BUSERITE 1151

ganese oxides is not only due to its oxidation to weakly soluble Co^{3+} species, but also because of the reducted layer strains from the substitution of Co^{3+} for Mn^{3+} .

Results obtained for these model compounds were compared with those for natural Co-containing asbolane and lithiophorite (Manceau et al. 1987). This comparison indicates that the different structural mechanisms explored in the laboratory can satisfactorily account for the observations made on natural samples. Specifically, the present study proves that Co substitutes for Mn in natural phyllomanganates and allows us to eliminate the possibility of precipitation of discrete CoOOH particles.