American Mineralogist, Volume 82, pages 1198–1209, 1997

Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa

ROBERT W. LUTH

C.M. Scarfe Laboratory of Experimental Petrology, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

Abstract

On the basis of both natural samples and experimental studies, clinopyroxene is a potential reservoir for potassium in the Earth's mantle. The amount of K partitioning into clinopyroxene depends on the phase assemblage present, the bulk composition, pressure, and temperature. To investigate some of these dependencies, subsolidus and melting phase relations in the system phlogopite-diopside have been studied to 17 GPa. In this system, phlogopite becomes unstable with increasing pressure, breaking down to potassium richterite, which in turn breaks down to another K-bearing hydrous phase (phase X), such that a K-rich phase coexists with clinopyroxene to 17 GPa. Clinopyroxenes contain ≤ 1.3 wt% K₂O in assemblages of phlogopite + clinopyroxene \pm olivine \pm liquid at 3–5 GPa, phlogopite + clinopyroxene + garnet \pm olivine \pm liquid at 7–9 GPa, clinopyroxene + garnet + olivine \pm potassium richterite \pm liquid at 11 GPa, and clinopyroxene + olivine + garnet + phase X at 14 and 17 GPa.

In these assemblages, K is partitioned into hydrous phases or liquid, rather than into the clinopyroxene. By inference, phlogopite (or its higher-pressure breakdown products) is the primary host for K in the mantle (if H_2O is present), and any coexisting clinopyroxene has very low concentrations of K. Conversely, the natural occurrence of clinopyroxene with >> 1 wt% K₂O requires that phlogopite, potassium richterite, or phase X is not stable in the local source environment of such samples.