TEM investigation of potassium-calcium feldspar inclusions in Bøggild plagioclase

TAKESHI HOSHI AND TOKUHEI TAGAI

Mineralogical Institute, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

ABSTRACT

Potassium-calcium feldspar inclusions in a Bøggild plagioclase were investigated by analytical high-resolution transmission electron microscopy (HRTEM), and the formation process of these inclusions is considered based on the Al-Si ordering scheme in ternary feldspar system. Nanometer-scale chemical analyses and selected-area electron diffraction (SAED) patterns show that the rims of the inclusions consist of lamellar intergrowths of potassium feldspar ($C\bar{I}$ symmetry) and anorthite ($P\bar{I}$ symmetry), whereas the core is unexsolved potassium feldspar ($C\overline{l}$ symmetry). Potassium feldspar and anorthite in the inclusions share the crystallographic orientation of the host Bøggild plagioclase. High-resolution lattice images indicate coherent interfaces between the inclusions and the host Bøggild plagioclase and the phases in the inclusions. The results indicate a unique formation process of potassium-calcium feldspar inclusions in a ternary feldspar: crystallization of host labradorite \rightarrow precipitation of potassium feldspar \rightarrow decomposition of Bøggild exsolution lamellae \rightarrow growth of anorthite on the rims of potassium feldspar inclusions. Potassium-calcium feldspar inclusions may be found in Bøggild and other plagioclase, and they have the potential to give constraints on thermal histories of K-rich plagioclase.