American Mineralogist, Volume 82, pages 325-336, 1997

Multi-site order-disorder kinetics in crystalline solids: A generalized formulation

LIAN-KUN SHA AND BRUCE W. CHAPPELL

Key Centre for the Geochemistry and Metallogeny of the Continents (GEMOC), Department of Geology, Australian National University, Canberra, ACT 0200, Australia

Abstract

Many crystalline solids have multiple nonequivalent sites among which different atoms show substitutional long-range order-disorder phenomena. The order-disorder kinetics of an atom among any n nonequivalent sites in a crystal can be described by the equation

$$x_i = c_{i1} + \sum_{j=2}^n c_{ij}(t)e^{\lambda_j t}$$

where x_i is the site occupancy of the atom at site s_i , n is the number of nonequivalent sites, λ_i ($\lambda_1 = 0$) is constant at a given temperature, pressure, and total composition of the crystal, and $c_{ij}(t)$ is constant or polynomial in t. Four theorems governing a multi-site order-disorder process have been proved, requiring that λ_j must be either zero (only $\lambda_1 = 0$), a negative real number, or a complex-valued quantity with the real part being a nonpositive number. The kinetic model becomes constrained and naturally complies with crystal-chemical conditions when the mole number per formula unit is chosen as the unit of all site-occupancy variables, or site multiplicities are explicitly incorporated into the model. When the mole fraction is directly used as the unit, the model becomes unconstrained, but it is a valid treatment that is as equally applicable to the multi-site order-disorder kinetics as the constrained model.