Degassing of alkalic basalts

JACQUELINE EABY DIXON

Division of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, U.S.A.

ABSTRACT

In order to model quantitatively exsolution of volatiles over the range of basaltic melt compositions found on oceanic islands, I present compositional parameterizations of H_2O and CO_2 solubilities and use these parameterizations to develop vapor saturation and degassing models for alkalic basaltic liquids. Vapor-saturation diagrams generated as a function of melt composition are used to determine the pressure at which the melt was last in equilibrium with a vapor and the composition of the vapor phase based on measured H_2O and CO_2 contents in basaltic glasses. These models allow the calculation of the pressure at which a magma of known initial volatile content reaches vapor saturation and begins to exsolve a vapor phase. The higher solubility of CO_2 in alkalic magmas causes vapor saturation in CO_2 -bearing alkalic magmas to be reached at lower pressures than in CO_2 bearing tholeiitic magmas having identical volatile contents. However, if variations in major element and volatile concentrations were linked by variations in the extent of melting, then volatile-rich, strongly alkalic magmas would begin to exsolve a vapor at slightly higher pressures than volatile-poor alkali olivine basalts or tholeiites.

Partitioning of H_2O and CO_2 into the vapor during volatile exsolution is controlled by the difference between H_2O and CO_2 solubilities. As melts become more alkalic, the relative difference between H_2O and CO_2 solubilities decreases, thus diminishing the preferential partitioning of CO_2 into the vapor. Exsolution of volatiles from tholeites is characterized by strong partitioning of CO_2 into the vapor such that most or all CO_2 is lost before any significant loss of H_2O . In contrast, the combination of higher CO_2 solubility and higher volatile contents (and perhaps higher CO_2/H_2O ratio) in alkalic melts results in less fractionation between CO_2 and H_2O during volatile exsolution.