High-temperature heat capacity of grossular (Ca$_3$Al$_2$Si$_3$O$_{12}$), enstatite (MgSiO$_3$), and titanite (CaTiSiO$_5$)

LAURENT THIÉBLOT,* CHRISTOPHE TÉQUI, AND PASCAL RICHERT†

Laboratoire de Physique des Géomatériaux, URA CNRS 734, Institut de Physique du Globe 4, place Jussieu, 75252 Paris Cédex 05, France

ABSTRACT

The heat capacities of synthetic grossular (Ca$_3$Al$_2$Si$_3$O$_{12}$), ortho- and protoenstatite (MgSiO$_3$), and titanite (CaTiSiO$_5$) were determined from drop-calorimetry measurements made between 400 K and 1390, 1811, and 1809 K, respectively. The heat capacity of grossular increases smoothly with temperature before leveling off in an anomalous way above 1500 K. For enstatite, no large heat capacity difference seems to occur between the ortho- and protoenstatite forms although important premelting effects are observed for protoenstatite above 1700 K. Our results for titanite up to the melting point confirm the minimal calorimetric effects at the para-antiferroelectric transition near 500 K and the large magnitude of the premelting enthalpy, which represents about 25% of the reported enthalpy of fusion.

INTRODUCTION

In spite of their importance in the lower crust and upper mantle, garnets and enstatites are minerals whose physical properties at high temperatures are not so well known. At 1 bar, for example, calorimetric measurements on well-characterized samples extend up only about 1000 K (e.g., Krupka et al. 1979, 1985; Watanabe 1982; Bosenick et al. 1996).

For garnets, measurements have long been hampered by the fact that these high-pressure minerals are prone to decomposition when heated at 1 bar. Then, the availability of large amounts of an almost pure natural pyrope (Mg$_3$Al$_2$Si$_3$O$_{12}$) made it possible to determine the heat capacity through drop-calorimetry experiments performed to 1340 K (Téqui et al. 1991), i.e., a temperature high enough to make reliable extrapolations to upper mantle conditions. Grossular (Ca$_3$Al$_2$Si$_3$O$_{12}$), the calcic end-member of the aluminosilicate garnets, does not occur naturally in a pure form. However, it is stable at lower pressures than pyrope, which makes synthesis of large quantities possible and suggests that at 1 bar grossular would not decompose at much lower temperatures than pyrope. Actually, the drop-calorimetry measurements reported in this paper could be made up to 1386 K. In addition to obtaining high-temperature data, the new measurements on grossular were motivated by the controversy over the systematic differences between low-temperature heat capacities measured by adiabatic calorimetry and those calculated from spectroscopically derived vibrational density of states (e.g., Hofmeister and Chopelas 1991).

For enstatite, the magnesian end-member orthopyroxene, calorimetric measurements have been hampered by complex polymorphism and difficulties distinguishing the various modifications (e.g., Smith 1969; Smyth 1974; Lee and Heuer 1987). Ortho- and protoenstatite, the polymorphs stable at low and high temperatures, respectively, can be obtained in large amounts, which allowed us to make measurements over wide temperature intervals. In addition to determining how the high-temperature heat capacity of these phases depends on their structure, we also investigated whether protoenstatite shows enthalpy anomalies before melting similar to those already found for other minerals with a pyroxene stoichiometry (Richet and Fiquet 1991).

In addition, we have also redetermined the heat capacity of titanite (CaTiSiO$_5$). This mineral recently has been the subject of several structural investigations (Ghose et al. 1991; Zhang et al. 1995; Chrosch et al. 1997; Xirouchakis et al. 1997a), with a great deal of attention focused on the para-antiferroelectric phase transition near 500 K. On the other hand, the available calorimetric data show large premelting anomalies in the enthalpy beginning about 110 K below the congruent melting temperature (King et al. 1954). Such premelting effects have recently been interpreted as configurational changes in crystals associated with an enhanced mobility of the network modifying cations (Richet et al. 1994, 1998). Interest in titanite thus stems from its much differing stoichiometry with respect to the pyroxene or feldspar minerals investigated previously.

EXPERIMENTAL METHODS

Materials

As described in detail by Thiéblot et al. (1998), which should be consulted for further details, grossular was prepared from a synthetic glass treated hydrothermally at 1070 K and 1.8 kbar in an internally heated vessel. Vacuum fusion analysis and thin-film infrared spectroscopy gave discrepant water contents of 2300 ± 200 and 600 ± 12 ppm, respectively (Thiébrot et al. 1998). In any case, the hydrogrossular component should represent less than 3 mol%. The titanite sample was synthesized from a stoichiometric mix of TiO$_2$, SiO$_2$, and CaCO$_3$ powders dried at 1370, 1370, and 820 K, respectively. After decarbonation, the mix was melted at 1770 K in a platinum crucible and crystallized at 1270 K for 10 h. Powder X-ray diffraction (XRD) experiments were made after sample synthesis for grossular and titanite. In both cases, a single-phase
pattern was obtained and gave, with the refinement program
LCR2, unit-cell parameters in agreement with standard data
(Table 1). For titanite, the unit cell parameters are consistent
with the results reviewed by Xirouchakis et al. (1997a) for
“subsolidus-derived” samples.

Single crystals of orthoenstatite were synthesized with the
flux method described by Grandin de l’Eprevier (1972) and
used by Ito (1975). The flux consisted of 90 g of Li2CO3, 140 g
of MoO3, and 25 g of V2O5 to which we added ~15 g of a sto-
ichiometric mix of MgO and SiO2 powders dried at 1370 K
prior to weighing. To ensure complete dissolution of MgO and
SiO2 in the flux, the mixture was melted at 1200 K for 5 d in a
platinum crucible in an electric muffle furnace. The tempera-
ture was then lowered to 920 K at a rate of 2 K/hour. Orthoenstatite single crystals were recovered through dissolution
of the quenched material into distilled water. These crys-
tals were nice 5 mm long needles elongated on c, but they rep-
resented only 20% of the enstatite material originally dissolved
in the flux. We recovered the flux through evaporation of the
aquo solution and repeated the procedure after adding 15 g of
another stoichiometric MgO:SiO2 mix. About 12 g of crystal-
line material were eventually obtained, with a size ranging from
0.1 to 5 mm. As grinding induces partial transformation of ortho-
clinoenstatite (e.g., Lee and Heuer 1987), we could not use
powder XRD to check the single phase nature of the material to
be used for the calorimetric measurements. Instead, we sifted
the run product and retained the 0.5–5 mm fraction, correspond-
ing to orthorhombic single crystals that could be clearly identi-
ﬁed under a binocular microscope. These were recovered in a
pristine condition after the calorimetry measurements. Although
the presence of small amounts of clinoenstatite after grinding
was actually observed, the lattice parameters of this orthoenstatite
sample could be determined from powder XRD experiments
(Table 1). For measurements at higher temperatures on protoenstatite, we used another synthetic material made from
MgO and quartz powders ground in an agate mortar and heated
to 1920 K. The resulting melt was then cooled to 1620 K, an-
nealed for 2 d, and finally quenched to room temperature.

Calorimetry measurements

About 5 g of the minerals were loaded as a fine or coarse
powder in Pt-Rh 15% crucibles for drop-calorimetry experi-
ments made with the procedures and the two different setups
described by Richet et al. (1982, 1992) for measurements above
and below 1000 K, respectively. After having been heated at a
temperature T, which was measured with two thermocouples
at the center of the crucible, the crucible was dropped into an
ice calorimeter in which the relative enthalpy H_T - H_{273}, released
was measured. The heating stage of the experiments lasted gen-
erally ~1 h and complete cooling to 273 K after the drop took
~20 min. For both setups, measurements on α-Al2O3, the calo-
irmetric standard, indicated instrumental inaccuracies of <0.2% for
the relative enthalpies and of <0.5% for the heat capacities
determined by differentiation of equations fitted to the relative

In preliminary experiments, we determined the maximum
temperature that grossular could withstand without decompos-
ing under heat treatments similar to those of the drop-calorim-
etry measurements. For this purpose, 200 mg of the material
were heated for 30 min at a given temperature, quenched, and
examined by optical microscopy and XRD. No signs of decom-
position were detected below 1350 K. As decomposition began
between 1400 K and 1500 K, these temperatures constituted the
upper limit for relative enthalpy measurements. The XRD pat-
tern of the sample recovered at the end of these measurements
did not show signs of decomposition. This is consistent with our
subsequent high-temperature XRD study where the onset of de-
composition was detected at about 1460 K for a very finely ground
powder of the same material (Thiéblot et al. 1998).

Previous studies have indicated that protoenstatite forms
rapidly at high temperatures (Brown and Smith 1963; Murakami
et al. 1982; Yang and Ghose 1995). Consistent with these find-
ings, only protoenstatite reflections were observed in a series
of XRD experiments made on this material from 1320 to 1820
K (Thiéblot 1996). In contrast to the single-phase nature of the
sample before the drop, a complex polymorphic mixture was
observed in an XRD pattern recorded on part of the sample
after the calorimetric measurements. Although this was expected
for samples heat treated in this way (Boysen et al. 1991), de-
termining the proportions of the different polymorphs unfortu-
nately was not possible because of the large size (~5 g) of the
sample, the differences in cooling rate the sample experienced
between its inner and outer parts, and the polymorphic changes
induced by grinding the sample at room temperature. As dem-
onstrated by Richet and Bottina (1984), however, the rate at
which a sample cools down in our calorimeter depends little
on the temperature before the drop. This ensured a good repro-
ducibility for the transformations undergone by protoenstatite
on cooling to 273 K. Indeed, without such a reproducibility, the
precision of the measured enthalpies would not have been
as good for protoenstatite as for the other minerals.

RESULTS AND DISCUSSION

Heat capacity determinations

The experimental relative enthalpies are listed in Table 2
where series and runs are labeled in chronological order and
the suffix -B indicates measurements made with the lower-tem-
perature setup. In the following, the enthalpy data also will be
plotted in the form of mean heat capacities

\[C_m = (H_T - H_{273})/(T - 273). \]

(1)

This representation is especially useful because it provides
a plot of the raw data at an expanded scale, without possible
fitting bias. For all minerals a smooth variation of the mean
heat capacity is observed, without any discontinuities or abrupt

\begin{table}[h]
\centering
\begin{tabular}{cccccc}
\hline
Mineral & a (Å) & b (Å) & c (Å) & β (°) & V (Å³) \\
\hline
Grossular* & 11.8512 (6) & 1664.5 (3) & \\
Orthoenstatite† & 18.230 (5) & 8.820 (2) & 5.176 (2) & 832.2 (7) & \\
Titanite‡ & 7.065 (5) & 8.720 (5) & 6.557 (4) & 113.86 (5) & 368.6 (12) & \\
\hline
\end{tabular}

\caption{Room-temperature lattice parameters of the minerals.}
\end{table}

* Compare with a = 11.851 (1) Å as reported by Geiger et al. (1987).
† Compare with a = 18.225 (2), b = 8.813 (1), c = 5.180 (1) Å and V = 632.0 (2) Å³ as given by Lee and Heuer (1987).
‡ Compare with a = 7.062 (1), b = 8.716 (2), c = 6.559 (1), β = 113.802 (1)° and V = 369.4 (3) Å³, as given by Xirouchakis et al. (1997a) for
"subsolidus-derived" samples.
Table 2. Relative enthalpy $H_2 - H_{273}$ of grossular, ortho- and protoenstatites, and titanite, [kJ/mol]

<table>
<thead>
<tr>
<th>No.</th>
<th>T (K)</th>
<th>$H_2 - H_{273}$</th>
<th>No.</th>
<th>T (K)</th>
<th>$H_2 - H_{273}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grossular</td>
<td>Proeno</td>
<td>Grossular</td>
<td>Proeno</td>
<td>Grossular</td>
<td>Proeno</td>
</tr>
<tr>
<td>ET11-B</td>
<td>407.7</td>
<td>48.11</td>
<td>EX17</td>
<td>13663.3</td>
<td>129.17</td>
</tr>
<tr>
<td>ET1-B</td>
<td>454.2</td>
<td>66.89</td>
<td>EX11</td>
<td>1427.1</td>
<td>163.84</td>
</tr>
<tr>
<td>ET14-B</td>
<td>540.1</td>
<td>103.62</td>
<td>EX4</td>
<td>1481.0</td>
<td>143.47</td>
</tr>
<tr>
<td>ET12-B</td>
<td>599.7</td>
<td>129.28</td>
<td>EX2</td>
<td>1574.6</td>
<td>155.98</td>
</tr>
<tr>
<td>ET6-B</td>
<td>639.2</td>
<td>147.74</td>
<td>EX3</td>
<td>1683.1</td>
<td>196.69</td>
</tr>
<tr>
<td>ET15-B</td>
<td>696.2</td>
<td>174.61</td>
<td>EX6</td>
<td>1739.9</td>
<td>177.16</td>
</tr>
<tr>
<td>ET3-B</td>
<td>751.9</td>
<td>200.51</td>
<td>EX16</td>
<td>1744.9</td>
<td>177.83</td>
</tr>
<tr>
<td>ET16-B</td>
<td>844.2</td>
<td>244.66</td>
<td>EX5</td>
<td>1772.3</td>
<td>182.56</td>
</tr>
<tr>
<td>ET4-B</td>
<td>907.9</td>
<td>277.49</td>
<td>EX15</td>
<td>1787.3</td>
<td>184.77</td>
</tr>
<tr>
<td>ET8-B</td>
<td>954.3</td>
<td>298.46</td>
<td>EX10</td>
<td>1811.4</td>
<td>191.86</td>
</tr>
<tr>
<td>ET5-B</td>
<td>997.7</td>
<td>319.37</td>
<td>FG15</td>
<td>1530.6</td>
<td>238.06</td>
</tr>
<tr>
<td>ET9-B</td>
<td>1043.8</td>
<td>342.84</td>
<td>FG11</td>
<td>1478.1</td>
<td>226.66</td>
</tr>
<tr>
<td>ET2</td>
<td>1075.3</td>
<td>358.30</td>
<td>FG1</td>
<td>1085.4</td>
<td>146.98</td>
</tr>
<tr>
<td>ET10</td>
<td>1133.8</td>
<td>383.83</td>
<td>FG5</td>
<td>1267.8</td>
<td>183.01</td>
</tr>
<tr>
<td>ET22</td>
<td>1167.5</td>
<td>404.11</td>
<td>FG4</td>
<td>1197.7</td>
<td>185.70</td>
</tr>
<tr>
<td>ET26</td>
<td>1226.7</td>
<td>433.38</td>
<td>FG3</td>
<td>1197.8</td>
<td>184.46</td>
</tr>
<tr>
<td>ET24</td>
<td>1248.3</td>
<td>443.86</td>
<td>FG9</td>
<td>1211.8</td>
<td>189.32</td>
</tr>
<tr>
<td>ET25</td>
<td>1300.3</td>
<td>495.93</td>
<td>FG7</td>
<td>1279.2</td>
<td>194.32</td>
</tr>
<tr>
<td>ET27*</td>
<td>1386.3</td>
<td>512.65</td>
<td>FG1</td>
<td>1077.9</td>
<td>165.58</td>
</tr>
<tr>
<td>Orthoenstatite</td>
<td>Grossular</td>
<td>Orthoenstatite</td>
<td>Grossular</td>
<td>Orthoenstatite</td>
<td>Grossular</td>
</tr>
<tr>
<td>EE12-B</td>
<td>415.6</td>
<td>12.64</td>
<td>FG3</td>
<td>1365.8</td>
<td>202.94</td>
</tr>
<tr>
<td>EE1-B</td>
<td>513.7</td>
<td>22.87</td>
<td>FG7</td>
<td>1478.1</td>
<td>226.66</td>
</tr>
<tr>
<td>EE11-B</td>
<td>514.1</td>
<td>22.73</td>
<td>FG15</td>
<td>1530.6</td>
<td>238.06</td>
</tr>
<tr>
<td>EE4-B</td>
<td>638.5</td>
<td>36.54</td>
<td>FG17</td>
<td>1568.7</td>
<td>248.16</td>
</tr>
<tr>
<td>EE2-B</td>
<td>696.6</td>
<td>43.30</td>
<td>FG18</td>
<td>1592.6</td>
<td>255.80</td>
</tr>
<tr>
<td>EE20-B</td>
<td>724.1</td>
<td>46.75</td>
<td>FG19</td>
<td>1613.2</td>
<td>260.62</td>
</tr>
<tr>
<td>EE5-B</td>
<td>771.7</td>
<td>52.16</td>
<td>FG20</td>
<td>1631.9</td>
<td>272.98</td>
</tr>
<tr>
<td>EE13-B</td>
<td>849.6</td>
<td>61.70</td>
<td>FG21</td>
<td>1642.9</td>
<td>284.72</td>
</tr>
<tr>
<td>EE6-B</td>
<td>907.9</td>
<td>68.89</td>
<td>FG22</td>
<td>1648.5</td>
<td>293.92</td>
</tr>
<tr>
<td>EE8-B</td>
<td>968.4</td>
<td>76.51</td>
<td>FG22</td>
<td>1653.8</td>
<td>296.92</td>
</tr>
<tr>
<td>EE9-B</td>
<td>1051.8</td>
<td>86.96</td>
<td>FG23</td>
<td>1658.0</td>
<td>306.75</td>
</tr>
<tr>
<td>EE10-B</td>
<td>1168.6</td>
<td>101.85</td>
<td>FG28</td>
<td>1707.9</td>
<td>335.00*</td>
</tr>
<tr>
<td>EE17</td>
<td>1225.4</td>
<td>109.51</td>
<td>FG1</td>
<td>1085.4</td>
<td>146.98</td>
</tr>
</tbody>
</table>

* Product overflow during the drop.

None of these equations are flexible enough to reproduce the enthalpy anomalies that can be observed near the melting point. Consequently, we used the following expression, as done previously by Richet et al. (1994):

$$C_p = A (1 - T/T_f)^a + a + b T + c T^2 + d T^{-0.5} + e T^3$$ \(6\)

where T_f is the melting temperature and $A (1 - T/T_f)^a$ is an extra term added to account for the very steep C_p increase in phase transition regions.

Grossular

The relative enthalpy of grossular was measured previously by Kiseleva et al. (1972). Their results on a natural sample, plotted in Figure 1 in the form of mean heat capacities, deviate by up to 1% from our results. As obtained from a fit made with Equation 3 to our data only (Fig. 2), our heat capacities agree to within ±1% with the differential scanning calorimetry (DSC) observations of Perkins et al. (1977) and Bosnjak et al. (1996).

At low temperatures, three different sets of adiabatic measurements (Krupka et al. 1979; Westrum et al. 1979; Haselton and Westrum 1980) show unusual differences that cannot be explained in terms of impurity content or natural vs. synthetic samples. The results of Kolesnik et al. (1979) for a natural and a synthetic sample differ surprisingly by up to 5% from these results, lying on both sides of them. Inasmuch as the high-temperature heat capacity of solids generally depends very little on impurity content, the reason for this discrepancy was unknown to Krupka et al. (1979). By infrared spectroscopy (Hofmeister, personal communication), it has been found that this synthetic sample contained about 0.7 ± 0.1 wt% H$_2$O, but this fact does not account readily for the anomalous scatter data of Krupka et al.**

Low temperature extrapolations by Berman and Brown (1985):

$$C_p = k_0 + k_a(T - T_m)^{0.5} + k_3 T^2 + k_4 T^3$$ \(4\)

and by Richet and Fiquet (1991):

$$C_p = k_0 + k_1 \ln T + k_2 T + k_3 T^2 + k_4 T^3.$$ \(5\)

None of these equations are flexible enough to reproduce the enthalpy anomalies that can be observed near the melting point. Consequently, we used the following expression, as done previously by Richet et al. (1994):

$$C_p = A (1 - T/T_f)^a + a + b T + c T^2 + d T^{-0.5} + e T^3$$ \(6\)

where T_f is the melting temperature and $A (1 - T/T_f)^a$ is an extra term added to account for the very steep C_p increase in phase transition regions.

Table 3. Coefficients of heat capacity equations (J/mol-K)\(^*$

<table>
<thead>
<tr>
<th>Equation 3</th>
<th>Equation 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(10^{-b})</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Grossular</td>
<td>787.356</td>
</tr>
<tr>
<td>Orthoenstatite</td>
<td>201.585</td>
</tr>
<tr>
<td>Protoenstatite‡</td>
<td>115.752</td>
</tr>
</tbody>
</table>

* Fits up to 1683 K and 1269 K with Equations 3–5 for protoenstatite and titanite, respectively, and up to the highest temperatures for both phases with Equation 6.
† Average absolute deviation of the fitted from the experimental values of Table 2.
‡ $R_{273} = 36.712, 1.747$, and 51.105 106 kJ/mol for Equations 3, 5, and 6, respectively.
The coefficients of the various C_p equations reported in Table 3 have thus been obtained from least-squares fits made simultaneously to the C_p data of Westrum et al. (1979), above 273 K, and Bosenick et al. (1996), and to our relative enthalpies. All these equations reproduce in nearly the same way the input data, with average absolute deviations (AAD) of the fitted values from the experimental data of 0.16, 0.19, and 0.24% for Westrum et al. (1979), Bosenick et al. (1996), and this work, respectively, and 0.76% for those of Haselton and Westrum (1980).

An unexpected feature of the high-temperature heat capacity of grossular is an anomalously slight temperature dependence (Fig. 3), which appears in our data above ~1200 K, i.e., at the upper end of our calorimetric measurements. This finding is at variance with the values calculated from vibrational modeling by Hofmeister and Chopelas (1991), with the empirical values given by Berman (1988), and with the smooth C_p increase exhibited by pyrope up to very high temperatures (Téqui et al. 1991). In fact, this discrepancy is especially intriguing, as high-temperature XRD experiments on the same material have yielded a “normal” thermal expansion coefficient of 2.7(3)/K at 1400 K, for instance (Thiéblot et al. 1998), which agrees with the value of 2.9/K used by Hofmeister and Chopelas (1991) at this temperature to derive isobaric heat capacities from the calculated isochoric values. Anomalous changes in the frequencies of vibrational modes accounting for this behavior could be sought through Raman or infrared spectroscopy measurements up to the highest temperatures achieved in this study.

Enstatites

As found previously for several other materials (e.g., Richet et al. 1982; Richet and Fiquet 1991), our data are consistent with the relative enthalpies measured by White (1919; see Fig. 4). Our data also agree with those of Stebbins et al. (1984) between 1650 and 1800 K whereas the results of Wagner (1932) are systematically lower than ours, for example by ~4% at 1200 K—a much greater difference than previously noted between the results of both laboratories (Richet and Fiquet 1991). In view of the apparently slight heat capacity differences between enstatite polymorphs discussed below, this discrepancy does not seem to be accounted for in terms of the different forms investigated. Our results agree well with the DSC orthoenstatite measure-

![Figure 1](image1.png)

Figure 1. Mean heat capacity of grossular. Experimental $H_T - H_{273}$ data of Kiseleva et al. (1972, open circles; referred with Eq. 3 to 273.15 K) and this work (solid squares), and fitted values as given by Equation 3 and the data of Table 4 (solid curve).

![Figure 2](image2.png)

Figure 2. (left and right). Heat capacity of grossular: experimental data and fitted values (solid curve) as given by Equation 3.

Table 3. —Extended

<table>
<thead>
<tr>
<th>Eq. 5</th>
<th>Eq. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_c</td>
<td>K_a</td>
</tr>
<tr>
<td>955.695</td>
<td>-52.741</td>
</tr>
<tr>
<td>50.873</td>
<td>12.809</td>
</tr>
<tr>
<td>41.947</td>
<td>12.242</td>
</tr>
<tr>
<td>355.865</td>
<td>-18.254</td>
</tr>
</tbody>
</table>
Figure 3. High-temperature extrapolations of the heat capacity of grossular. The data of Téqui et al. (1991) for pyrope have been included for comparison.

Figure 4. Mean heat capacities of ortho-enstatite and protoenstatite: experimental data of Table 2 and fitted values as given by Equations 3 and 6, respectively. The discontinuity at around 1300 K represents an enthalpy of partial conversion of protoenstatite to lower-temperature polymorphs (see text). The arrow indicates the onset of premelting.

Figure 5. Heat capacities of ortho- and protoenstatite. Experimental data and values given by Berman (1988) and by Equations 3 and 6 for ortho- and protoenstatite, respectively.
clinoenstatite was derived from the observations of Wagner (1932) who did not give any detail regarding the characterization of his “clinoenstatite” sample.

Another noteworthy feature seen in Figure 5 is the anomalous enthalpy increase due to premelting that begins near 1700 K, i.e., 130 K below the onset of incongruent melting of protoenstatite (Boyd et al. 1964), which translates to a very steep heat capacity gradient. From their high-pressure experiments, Boyd et al. (1964) could not resolve to better than 20 K the 1-bar metastable, congruent melting point of protoenstatite from its actual solidus. This temperature of congruent melting has to be lower than the solidus, and we indeed found that a critical temperature of about 1816 K in Equation 6 allowed us to optimize the fit to the data of Table 2. The difference between the heat capacities given by Equations 6 and 5 indicates that the enthalpy of premelting (between the temperature of the onset of premelting and the metastable, congruent melting temperature of 1816 K) is about 7 kJ/mol and thus represents about 10% of the enthalpy of fusion of 73 ± 6 kJ/mol (Richet and Bottinga 1986). This fraction thus appears to be somewhat lower than the 17% determined previously for diopside and pseudowollastonite (Richet et al. 1994), two other minerals with a pyroxene stoichiometry. For both of these minerals, the onset of premelting correlates with an enhanced dynamics of the alkaline earth cations (Dimanov and Ingrin 1995; Richet et al. 1998). Regardless of the precise nature of the dynamics at work in premelting, this suggests that
a slightly stronger bonding makes it somewhat less effective in enstatite than in Ca-bearing phases.

Titanite

Our measurements are in excellent agreement (Fig. 6) with the results of King et al. (1954) which have long represented the only calorimetric information available. Recently, C_p data reported graphically (Zhang et al. 1995) have shown a slight lambda-type anomaly for the para-antiferroelectric transition observed near 500 K (Fig. 7). Owing to its low temperature and small enthalpy of \approx80 J/mol, this transition is not apparent in the drop-calorimetry data. Likewise, the calorimetric effects of the phase transitions reported at 825 K and possibly near 1150 K (Zhang et al. 1997; Chrosch et al. 1997) also appear too small to be detected from relative-enthalpy measurements. For practical purposes, we thus list in Table 3 C_p equations valid from room up to high temperatures. With Equation 3, for example, the data of King et al. (1954) and Table 2 are on the average reproduced to within 0.07 and 0.10%, respectively. Besides, Xirouchakis et al. (1997a, 1997b) have pointed out that the lattice parameters and enthalpy of formation of titanite depend on synthesis conditions. Heat capacities, in contrast, are in general much less sensitive to minor structural differences. This is borne out by the good agreement between our results and previous data because the sample investigated by King et al. (1954) crystallized from a melt and, according to the summary shown by Xirouchakis et al. (1997a), should have had lattice parameters differing from those of our own sample.

The onset of premelting has been observed near 1550 K by King et al. (1954) and in this study as well, i.e., about 110 K below the congruent melting point. In Table 3, the coefficients of Equation 6 have been determined from data extending up to 1643 K. They give an enthalpy of premelting of about 30 kJ/mol, but this estimate is not well constrained because the actual limit between premelting and melting is difficult to pinpoint. As titanite is not a glass former and instead crystallizes readily from the melt on cooling, King et al. (1954) could measure directly the enthalpy of fusion as 124 kJ/mol. Our intent was to check this result, but the very high fluidity of the melt prevented us from doing so. Our measurements point to a slightly lower melting temperature than previously reported, namely about 1658 \pm 3 K instead of 1665 \pm 5 K, in agreement with the range 1648-1656 K found through differential thermal analysis by Crowe et al. (1986).

Although different samples were investigated, the agreement between our results and those of King et al. (1954) is especially noteworthy when the melting point is being approached. Once more, this confirms that premelting is an intrinsic feature of a crystal that does not depend on some sample peculiarity. Titanite is made up of chains of corner-sharing TiO$_6$-octahedra whose cross-linking by SiO$_4$-tetrahedra delineate large sites where Ca is sevenfold coordinated (Taylor and Brown 1976). It would be interesting to determine whether premelting is associated mainly with an enhanced mobility of Ca, as found for diopside and pseudowollastonite, or if the distinct structural roles played by Si, Ti, and Ca can give rise to a more complex behavior. Finally, it has been pointed out that no premelting is observed for minerals such as quartz (SiO$_2$) or carnegieite (NaAlSiO$_4$), which experience α-β transitions giving rise to high-temperature phases with dynamically averaged structures (Richet et al. 1994). This is not the case of the transitions experienced by titanite, as revealed by their very small enthalpies, whence the observation of typical premelting effects.

ACKNOWLEDGEMENTS

This work was part of an NSF-CNRS cooperative research program between the University of California at Davis (A.M. Hofmeister) and INPG-P (P. Richet). We thank A. Bosenick and C.A. Geiger for communicating data, W.L. Brown for discussion, M.A. Bouhid for comments, and A. Bosenick and D. Xirouchakis for thorough reviews.

REFERENCES CITED

Berman, R.G. and Brown, T.H. (1985) Heat capacity of minerals in the system Na$_2$O-K$_2$O-CaO-MgO-FeO$_2$-Fe$_2$O$_3$-Al$_2$O$_3$-SiO$_2$-TiO$_2$-H$_2$O-CO$_2$: representation, estimation and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168–183.

Kiseleva, I.A., Topor, N.D., and Mel’chakova, L.V. (1972) Experimental determina-

MANUSCRIPT RECEIVED MARCH 30, 1998
MANUSCRIPT ACCEPTED DECEMBER 7, 1998
PAPER HANDLED BY J. WILLIAM CAREY