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INTRODUCTION

Over the past 90 years, an astonishing number of papers
have been written on the order-disorder phase transitions in
calcite (CaCO3), and the closely related material NaNO3 (with
mineral name nitratine); a conservative count puts the number
at around 80! There are several reasons for the abiding interest
in these phase transitions: (1) geologically speaking, calcite is
an important material, and the order-disorder phase transition
has a marked influence on the calcite-aragonite transition that
is widely used as a geobarometer and geothermometer (Salje
and Viswanathan 1976; Redfern et al. 1989); (2) both calcite
and NaNO3 represent some of the simplest compounds con-
taining both ionic and covalent interactions and so are inter-
esting from the point of view of developing simulation
techniques; and (3) attempts to assign the phase transitions to
standard models have been largely unsuccessful, thus reveal-
ing a degree of complexity that is surprising in such chemi-
cally simple materials.

This paper aims to review recent experimental work on the
problem and to provide a simple and transparent re-interpreta-
tion of it, in view of recent progress in understanding mag-
netic phase transitions.

The phase transitions in both calcite and NaNO3 involve an
orientational ordering of the carbonate and nitrate groups, re-
spectively, on cooling. The symmetry change is R3

–
m → R3

–
c

in both cases, which is marked by the appearance of superlattice
Bragg reflections at the Z-points of reciprocal space, i.e., the
(0,0,3/2) point indexed using the hexagonal setting of R3

–
m. In

the high-temperature phases the nitrate and carbonate molecu-
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ABSTRACT

The phase-transition behavior of both calcite and the isostructural compound NaNO3 have long
been thought to be anomalous. In particular, the β critical exponent for the orientational order-disor-
der transitions takes on a value close to tricritical behavior (β = 0.25) in both materials, and in NaNO3

two crossovers to regimes where β = 0.22 and then β = 0.41 have been reported as Tc is approached.
The most significant puzzle was why both materials should appear to be tricritical under ambient
conditions of both pressure and the conjugate field. The experimental work on these materials is re-
analyzed in the light of recent progress in understanding two-dimensional magnetic ordering. It is
shown that the experimental results are fully consistent with the two-dimensional XY model. Unlike
the tricritical model, this gives a simple physical explanation for the disordering process and ob-
served critical exponents. In particular, it supports other recent experimental findings from calcite
and NaNO3 that the orientational order-disorder occurs through continuous planar rotations of the
carbonate and nitrate groups, rather than discrete jumps.

lar ions are orientationally disordered about their threefold axes,
which are parallel to the crystallographic c axis. One signifi-
cant difference between the two materials is the phase-transi-
tion temperatures: for NaNO3, Tc = 549 K, whereas for calcite,
Tc = 1260 K. Experimental studies of calcite are made difficult
by the fact that it decomposes into CaO and CO2 at about 1100
K under normal conditions, so that the phase transition may
only be observed if the sample is kept in a partial pressure of
CO2. For this reason, there have been many more experimental
studies of the phase transition in NaNO3, which I will there-
fore concentrate on.

PREVIOUS WORK

One obvious possibility for the mechanism is a continuous
increase with temperature of the angular oscillation of the
groups about the c axis, leading eventually to a cooperative
free rotation above Tc. This so-called “free-rotation” model was
first suggested by Kracek et al. (1931) and initially received a
large amount of support, until an alternative model was pro-
posed, the “two-position disorder” model. Here, the nitrate
groups become progressively more disordered between the two
possible orientations of the low form, which are achieved by
60° flips of the groups about the c axis. At Tc the space-aver-
aged correlation function along c tends to zero, and the nitrate
groups flip randomly between the two positions. This model
was first put forward by Ketalaar and Strijk (1945), and until
very recently was the generally accepted model. The two mod-
els are illustrated schematically in Figure 1.

Thus, the free-rotation model is analogous to the XY model,
where a magnetic dipole can take any orientation in the x-y plane
perpendicular to the z axis, while the two-position disorder model
is analogous to the standard Ising model. However, the nitrate
and carbonate groups are not dipoles, and so the free-rotation*E-mail: mark.harris@rl.ac.uk
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and two-position disorder models are not formally equivalent
to these two spin models in terms of their microscopic Hamil-
tonians. Instead, the equivalence comes through the nature of
the critical fluctuations, which drive the phase transitions in
both the structural and spin models, as discussed below.

Experimental studies of the disordering mechanism

Recent work has cast doubt on the validity of the two-posi-
tion disorder model as an accurate description of the phase tran-
sitions in calcite and NaNO3. Data from X-ray structure
refinements of NaNO3 for T < Tc – 26 can be described equally
well by both the two-position disorder model and a model in-
voking orientational disorder in the manner of the free-rota-
tion model (Lefebvre et al. 1984). However, close to the phase
transition, for T > Tc – 26, the free-rotation model provided a
better description of the data. Gonshorek et al. (1995) performed
a high precision structure refinement of NaNO3 at room tem-
perature (T ≈ Tc – 250), and found absolutely no evidence for
nitrate groups flipped by 60° from the ordered positions; in-
stead, a significant degree of librational motion of the nitrate
groups was detected. Because Schmahl and Salje (1989) ob-
served that the order parameter appears still to be evolving even
at temperatures as low as that of the Gonshorek et al. experi-
ment, the disordering mechanism is probably not associated

with 60° flips of the nitrate groups, in the manner of the two-
position disorder model. For calcite, Markgraf and Reeder
(1985), Dove et al. (1998), and Swainson et al. (1998) have all
made similar observations: instead of statistical disorder, only
large-amplitude planar librations of the carbonate groups seem
to occur. Therefore, the orientational disorder in both calcite
and NaNO3 is driven primarily by large-scale planar rotations
of the carbonate and nitrate groups. The phase transitions are
then precipitated by the librational amplitude of the carbonate
and nitrate groups exceeding a critical threshold, rather than as
a result of a statistical number of “wrong” orientations.

Experimental work on the β critical exponent

Studies of the birefringence (Poon 1988), lattice parameters
(Reeder et al. 1988), and X-ray superlattice peaks (Schmahl
and Salje 1989) of NaNO3 have all concluded that for tempera-
tures below about Tc – 50, the order parameter for the phase
transition, Q, may be expressed as

Q ∝ t β (1)

where t is the reduced temperature t = (Tc – T)/Tc, and β  ≈ 0.25
(Table 1). In calcite, a neutron diffraction experiment has also
observed a value of β = 0.25 (Dove and Powell 1989). This is

TABLE 1. Values for the β critical exponents  for calcite and NaNO3

β α
Tricritical mean-field (Landau) theory 0.25 0.5
3d 3-state Potts model 0.21 0.54
3d Ising model 0.326 0.106
3d XY model 0.345 –0.01
2d XY model 3π 2/128 ≈ 0.231 0.36
Calcite (neutron diffraction) 0.240(8) –
NaNO3 (X-ray and neutron diffraction) 0.228(2) for t > 10–2 –

0.34(2) for t < 10–2 –
NaNO3 (spontaneous strain) 0.22(1) –
NaNO3 (birefringence) 0.22(1) –
NaNO3 (heat capacity) – 0.40(6)*, 0.35(6)†
NaNO3 (thermal expansion) – 0.34(1)
Notes: The exponents are for various theoretical models and also extracted from previously published experimental data. See text.
* Reinsborough and Whetmore.
† Jriri et al.

FIGURE 1. Schematic representations of
a carbonate/nitrate group looking down the
c axis for the orientational order-disorder
transitions in calcite and NaNO3. (a) The
free-rotation model. (b) The two-position
disorder model.
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the value for a tricritical phase transition described within the
framework of mean-field (or Landau) theory. Tricritical behav-
ior conventionally results at a point in the T-P-H phase dia-
gram (where P is the pressure, and H can be any conjugate
variable parameter such as the magnetic field, or the concen-
tration of a chemical species) where lines of first and second
order phase transitions meet so that three phases coexist
(Griffiths 1970). Finding the tricritical value β = 0.25 thus sug-
gests that the transitions in both calcite and NaNO3 are inter-
mediate between first order (discontinuous) and second order
(continuous) behavior, and that both materials contain a
tricritical point in their phase diagrams at conditions of ambi-
ent P and H.

What is perhaps more interesting is that as the transition in
NaNO3 is approached, the value of β appears to be reduced
from 0.25 to 0.22, which happens at a temperature of approxi-
mately Tc – 30. There is currently no indication that a similar
effect happens in calcite. In addition, a recent neutron diffrac-
tion study of the critical scattering from NaNO3 has shown that
an additional crossover occurs at about Tc – 5, where the order
parameter changes again, this time to a value determined as β
= 0.41 (Payne et al. 1997).

The outstanding questions

The experimental work has thus highlighted two principle
questions: (1) why does the β exponent change in NaNO3 and
(2) why is β close to being tricritical in both calcite and NaNO3?
This latter question is at first sight the most puzzling, because
it is extremely unlikely that a tricritical point should occur at
conditions of ambient P and H, in both calcite and NaNO3. In
case one is inclined to doubt whether it is really so unlikely,
consider the case of the alkali halides NX4Cl and NX4Br, where
X is either H or D (Seeck et al. 1998). These compounds are
chemically and structurally very similar under ambient condi-
tions, and all contain well-attested tricritical points in their (P,T)-
phase diagrams. However, the positions of the tricritical points
are very different. For instance, the tricritical point in NH4Cl
occurs at a pressure of 1500 bar, while in ND4Cl it is an order
of magnitude lower, at 150 bar. In NH4Br it is at a very differ-
ent pressure again: 3250 bar. Clearly, changes in the chemistry
have a profound influence on the positions of the tricritical
points, and we would expect exactly the same argument to hold
for calcite and NaNO3, if indeed they were truly tricritical.
Because no explanation for this problem has been put forward
until now, I will discuss it later, after discussing previous at-
tempts to answer question 1.

The most plausible explanation for the apparent change in
the value of β from 0.25 to 0.22 in NaNO3 is that strong critical
fluctuations are present at temperatures close to Tc. These re-
sult in a breakdown of mean-field theory over a temperature
interval known as the critical region, where the tricritical value
for β is expected not to hold. The problem with this explana-
tion is that the effect of critical fluctuations at a tricritical tran-
sition in a three-dimensional material is only to add a
logarithmic correction to the temperature dependence of Q
(Bruce 1980). Equation 1 then becomes

Q ∝ t1/4 |log t|1/4 . (2)

Whereas this logarithmic correction can be mis-identified as a
slowly varying β exponent (Fig. 2), it would only result in an
effective value of β = 0.22 between reduced temperatures 10–4

< t < 10–3, i.e., within about 0.5 K of the phase transition in
NaNO3. Experimental observation places the crossover to β =
0.22 much further from the transition, at about Tc – 30. Hence
we can discount the possibility that the crossover is due to the
breakdown of tricritical behavior in the critical region. Lynden-
Bell et al. (1989) and Schmahl and Salje (1989) instead sug-
gested that the change in the value of β from 0.25 to 0.22 is due
to the existence of non-critical fluctuations into a further or-
dered phase, associated with the F-point of reciprocal space,
which corresponds to the (1/2,0,2) point in the hexagonal set-
ting. The unusual critical behavior might then be explained as
the effect of strongly competing order parameters, one associ-
ated with the Z-point, the other with the F-point, with the Z-
point order parameter winning. In support, a large body of
experimental and computational work now exists for both cal-
cite and NaNO3, pointing toward the existence of such a non-
critical phase associated with the F-point (see in particular:
Lynden-Bell et al. 1989; Dove et al. 1992; Hagen et al. 1992;
Harris 1993; Ferrario et al. 1994; Harris et al. 1998a, 1998b).
However, it still does not answer the question of why the tran-
sitions in both materials are close to being tricritical in the first
place. In addition, the suggestion that competing interactions

FIGURE 2. The order parameter for a tricritical phase transition
with critical fluctuations—Equation 2—is shown as the solid line.
Dashed line is the best fit to this line of Equation 1 with β = 0.22.
Dotted line, β = 0.25. This illustrates that an effective exponent of β =
0.22 is only valid for very small reduced temperatures, 10–4 < t < 10–3.
Both axes are shown on logarithmic scales, so that pure power-law
behavior would be linear.
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can modify critical exponents is a highly contentious one and
is not in general supported by work on magnetic systems, where
the microscopic interactions are better understood. The pro-
posal below will answer both questions 1 and 2 without the
need to invoke competing order parameters. It will also be ar-
gued that, interesting as they are, the F-point fluctuations are a
“red herring” in terms of explaining the properties of the phase
transitions.

One further suggestion has been made to explain the cross-
over in the value of β from 0.25 to 0.22 in NaNO3. This sug-
gestion was made by Schmahl and Salje (1989), who noticed
that the three-dimensional 3-state Potts model has a theoretical
value of β  ≈ 0.21 (Table 1). This model is appropriate for sys-
tems where the order parameter can have a choice of three val-
ues when the symmetry is broken, whereas for instance the
2-state Potts model is essentially the Ising model. Schmahl and
Salje proposed that the 3-state order parameter is related to a
type of wetting phenomenon where domains of the F-point
structure form as interfaces between anti-ordered domains of
the conventional Z-point structure. The interface thus corre-
sponds to a pseudo-spin 0 between areas with pseudo-spins +1
and –1. However, there are two problems with this proposal:
(1) more recent work shows that the suggested F-point struc-
ture is not energetically degenerate with the Z-point structure
(Dove et al. 1992) and (2) fluctuations into the F-point phase
are not critical fluctuations, while fluctuations into the Z-point
structure are. Therefore, the F-point structure cannot now be
considered to represent the third state of a 3-state order param-
eter, and so there is no clear physical basis for how the 3-state
Potts model might apply to calcite and NaNO3.

UNIVERSALITY  AND SPIN MODELS

The universality principle

The universality principle is fundamental to the current un-
derstanding of phase-transition behavior inside the critical re-
gion. Put simply, it says that the values of the critical exponents
of any system undergoing a phase transition are determined
solely by the dimensionality (d) of the system, the dimension-
ality (m) of the order parameter, and the relative length scales
of the microscopic interactions. Each different (d,m) case then
corresponds to a different “universality class.” Experimental
tests have shown universality to hold in many cases, whether
the phase transition is magnetic, superconducting, liquid-to-
gas, or structural. Mean-field theory ignores the dimensional-
ity and is appropriate for any system that contains long-range
interactions, because the microscopic details of the Hamilto-
nian become less important. For instance, some materials un-
dergoing ferroelastic phase transitions such as Na2CO3

(Swainson et al. 1995; Harris et al. 1996, 1997) are dominated
by long-range forces to such an extent that no departure is ob-
served from mean-field-type theory even extremely close to
Tc. On the other hand, magnetic systems generally contain much
shorter-ranged interactions (frequently as short as only a single
nearest-neighbor bond length), and the critical region is then
very large. Non-classical (i.e., non mean-field) critical expo-
nents are observed up to large reduced temperatures, typically
up to t ≈ 0.2 or more (e.g., see Table 1 of Bramwell and
Holdsworth 1993a). This is especially true of two-dimensional

systems, which have significantly stronger critical fluctuations
than three-dimensional systems (Als-Nielsen and Birgeneau
1977). An extreme example is that of the layered antiferromag-
net Rb2CoF4, whose order parameter has been observed to fol-
low the theoretical prediction for the two-dimensional Ising
model (which is, of course, a non-mean field model) over a
huge range of reduced temperature: 10–3 < t < 0.7 (Collins 1989).
Strictly speaking though, the critical region is asymptotic, in
the sense that the “true” critical exponents will only be found
at vanishingly small reduced temperatures. But whatever the
size of the true critical region, it is a very frequent empirical
observation that the non-mean field power law behavior ex-
tends out to reduced temperatures t > 0.1 in magnetic materi-
als, particularly when the interactions are strongly two
dimensional.

We might then consider whether we can apply the univer-
sality principle to calcite and NaNO3. First, we need to deter-
mine qualitatively the length scale of the critical interactions.
Most magnetic and structural order-disorder phase transitions
(with the possible exception of ferroelectrics) are driven by
short-range forces. In the case of molecular orientational or-
dering transitions this is due to the fact that, although relatively
long-range dipolar and multipolar interactions are always
present, the transitions are controlled on a very short-range scale
by the steric constraints of molecules impinging against each
other as they are reorganized. Whereas there is a displacive
component to the phase transitions in both calcite and NaNO3

(because c changes quite markedly), even this is a result of
these steric considerations. Hence, to a first approximation,
calcite and NaNO3 are driven mostly by short-range forces, and
so will have large critical regions like magnetic phase transi-
tions. In that case, mean-field theory should not apply except
for temperatures far from Tc, implying that we can assign the
transitions to a universality class and compare their behavior
with spin models.

A possible universality class for calcite and NaNO3
At first sight, assignment of calcite and NaNO3 to the rel-

evant universality class appears trivial. The low-temperature
ordered phases of both materials involve three-dimensional
orientational ordering of the carbonate and nitrate groups, so
we might expect that d = 3. Also, because there is a very strong
degree of alignment (or “anisotropy”) for the orientations of
the groups in the low temperature phases, we might assume
that the groups behave effectively as Ising spins, so that m = 1.
This is the situation essentially favored by the two-position
disorder model, where 60° flips of the groups about their three-
fold axes are equivalent to either “up” or “down” orientations
of an Ising spin. So we might then expect the universality class
to be that of the three-dimensional Ising model.

However, to be more precise, it is the dimensionalities of
the critical fluctuations that determine the character of the phase
transition. As discussed above, recent high precision structure
refinements suggest that the phase transitions are driven by pla-
nar rotations of individual carbonate and nitrate groups rather
than 60° flips, and so the fluctuations are more correctly de-
scribed by the XY model, where m = 2. Furthermore, the cal-
cite crystal structure is very two dimensional with respect to
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the carbonate groups, which lie in planes perpendicular to the
c axis. Calculations (Dove, unpublished calculations) show that
the forces between carbonate groups in the planes are consid-
erably stronger than the forces between planes, by a factor of
approximately 20. This means that we would expect the criti-
cal fluctuations in both calcite and NaNO3 to be predominantly
two dimensional in extent. This argument suggests that the ex-
pected universality class is the two-dimensional XY model. As
we will see, this is borne out by the published experimental
data. However, calcite and NaNO3 are not perfect two-dimen-
sional systems, so we might expect that at temperatures very
close to the phase transition, the three-dimensional nature of
the ordering will come into play, as will the effective anisot-
ropy. This means that we expect a crossover to three-dimen-
sional XY or three-dimensional Ising behavior to occur close
to Tc. Again, this will be shown as consistent with the experi-
mental data. This type of crossover from to two-dimensional
to three-dimensional behavior is frequently observed in lay-
ered magnetic compounds (Collins 1989) and is simply due to
the fact that three-dimensional correlations become important
very close to a phase transition, once the much stronger two-
dimensional correlations have diverged. Another way of look-
ing at it is to say that the weak three-dimensional interactions
modify Tc slightly from the purely two-dimensional ordering
temperature, which means that they are then observed over this
modified temperature range close to Tc.

The two-dimensional XY model

Until recently, it had always been assumed that the two-
dimensional XY model does not exhibit a phase transition to a
conventional magnetically ordered phase. Instead, theoretical
calculations showed that a transition occurs on cooling to a
state characterized by a spatial ordering of topological defects
called vortices. This is known as a “Kosterlitz-Thouless-
Berezinskii” (KTB) transition. The η and δ critical exponents
may be quantified, but the exponents β, γ, and ν (which are
those most easily accessible to experiment) are undefined. What
was then surprising was that there exist several magnetic com-
pounds that have microscopic Hamiltonians corresponding to
the two-dimensional XY model, but which undergo conven-
tional phase transitions, with a quantifiable order parameter
and well-defined critical exponents. In particular, the β expo-
nent is commonly found to be 0.23, which is close to the
tricritical value of 0.25.

Bramwell and Holdsworth (1993a, 1993b) solved this ap-
parent contradiction, and in doing so provided one of the few
rigorous results that have been discovered in the theory of phase
transitions in experimentally realizable systems, ranking along-
side Onsager’s solution of the two-dimensional Ising model.
Although there is no true ordered phase in the two-dimensional
XY model for an infinite system, the correlation function has
power-law decay, which means that a system of finite size
should exhibit a finite order parameter. An estimate of the or-
der parameter at the KTB transition is

Q = (2N)–1/16 (3)

where N is the number of spins in the system. Bramwell and

Holdsworth demonstrated this surprising effect with the fol-
lowing amusing illustration: a typical Monte Carlo simulation
might contain N = 105 spins, which would give Q ≈ 0.47, while
a sample which was the size of a page of the average-sized
journal might contain N ≈ 1016–1017 spins, which would still
give Q ≈ 0.1. Consequently, all experimental samples are ex-
pected to exhibit a conventional ordered phase and a finite or-
der parameter at low temperatures, despite the findings of the
original KTB work, which is valid only in the limit of infinite
system size. As an aside, it should be noted that finite size can
be equivalent to a whole series of related perturbations, includ-
ing three-dimensional coupling. Significantly, Bramwell and
Holdsworth found that the critical exponent for the order pa-
rameter of a finite-sized two-dimensional XY system can be
determined exactly as

β = 3π 2/128 ≈ 0.231 (4)

which explained the previously mysterious experimental re-
sults.

RE-ANALYSIS  OF EXPERIMENTAL  DATA

Superlattice Bragg peaks

For calcite, the superlattice peak intensity data of Dove and
Powell (1989) was analyzed by simultaneous least-squares fit-
ting of Equation 1. One point from the original data set was
eliminated from the fit, which is the intensity of the (1,1,3)
peak at a temperature of 1258 K (where t = 0.0016). This point
is so close to the phase transition that it is almost certainly
contaminated heavily with critical scattering, and so will not
represent an accurate measure of the order parameter. The value
of the critical exponent obtained with this fitting procedure is
β = 0.240(8) (Fig. 3). Within the experimental error, this value
is consistent with the original tricritical interpretation of Dove
and Powell (1989), but also with the value (Table 1) expected
for the two-dimensional XY model (Eq. 4).

For NaNO3 (Fig. 4), data of Schmahl and Salje (1989) and
of Payne et al. (1997) were scaled together to lie on a single
curve. Combining the data greatly increases the precision of β,
because we now have a measure of the order parameter over
nearly three decades of reduced temperature. The clear change
in slope at t ≈ 10–2 is the crossover. For t > 10–2, the critical
exponent is β = 0.228(2), a value extremely close to the theo-
retical value for the two-dimensional XY model (Eq. 4). For t
< 10–2, β = 0.34(2), which is consistent with three-dimensional
Ising or three-dimensional XY behavior within the error. The
generally accepted values for three-dimensional Ising and three-
dimensional XY behavior are β ≈ 0.326 and β ≈ 0.345, respec-
tively (Table 1).

Only the Schmahl and Salje data taken above 400 K (t <
0.3) were fitted. This is because for t > 0.3, the experimental
data deviate slightly from the power law behavior. This could
be due to the fact that the critical region extends out no further
than t ≈ 0.3. However, as shown in the next section, the sponta-
neous strain and birefringence data follow a power law behav-
ior with β = 0.22 out to t ≈ 0.5. The size of the critical region is
thus large, and similar to that of many two-dimensional mag-
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netic systems (Collins 1989). Such a large critical region is a
signature of two-dimensional XY behavior (Bramwell and
Holdsworth 1994). This suggests that the most likely explana-
tion for the deviation of the superlattice intensity from a power
law for t > 0.3 is extinction, which is always a serious concern
with measurements of superlattice intensities (Cowley 1987).
Schmahl and Salje (1989) disregarded the effect of extinction,
and treated the data for t > 0.3 on an equal footing with the
much more reliable data taken closer to Tc. This is probably the
cause of their observation of a crossover from β = 0.22 close to
Tc, to the tricritical value of β = 0.25 further from Tc (where t >
0.1): extinction always has the effect of increasing β anoma-
lously.

Payne et al. (1997) also studied the critical scattering in
NaNO3 above Tc, and were able to determine the critical expo-
nents for the correlation length and the susceptibility to be ν =
0.65(5) and γ = 1.27(4), respectively. These are inconsistent
with mean-field behavior (ν = 0.5, γ = 1), but close to three-
dimensional Ising (ν = 0.63, γ = 1.24) and three-dimensional
XY behavior (ν = 0.67, γ = 1.32). Payne et al. noticed that the
scaling relation

2β = dν – γ (5)

is only just satisfied within the experimental errors with β =
0.41, which is the value they determined close to Tc. Using our
newly determined value of β = 0.34(2), we find that the scaling
relation (Eq. 5) is satisfied exactly, which provides further sup-
port for this approach. Hence, above Tc we find the same three-
dimensional behavior as for below Tc, for reduced temperatures
| t | < 10–2. Presumably, if we were able to measure the critical
scattering above Tc for | t | > 10–2, we would find a crossover
back to two-dimensional XY behavior, matching the crossover
below Tc. Unfortunately, NaNO3 melts at a temperature corre-
sponding to |t| ∪0.04, making this experiment practically im-
possible.

Birefringence and spontaneous strain

Additional studies investigated the supposed tricritical na-
ture in NaNO3 (due to the experimental difficulties there are no
additional data for calcite). Poon and Salje (1988) presented
birefringence data to illustrate their interpretation that the tran-
sition is tricritical for T < 500 K, with a crossover to a region
with β = 0.22 for 500 K < T < Tc. However, as an aside they
noted that their data could equally well be fitted with the single
exponent β = 0.22(1). Because this involves fitting fewer pa-
rameters to the data, this must be the more reasonable value,
and is also consistent with the two-dimensional XY model.

Reeder et al. (1988) measured the temperature dependence
of the lattice parameters in NaNO3. From this they determined
the spontaneous strain, and like Poon and Salje (1988) pre-
sented an interpretation in terms of a crossover from tricritical
behavior at low temperatures to β = 0.22 closer to Tc. During
the data analysis, each of the two regions was allowed to have
a different value of Tc, so that the tricritical region had an ef-
fective Tc = 597 K, and the β = 0.22 region had the “real” ob-
served value of Tc = 553 K, some 10% lower. An equally
satisfactory fit (Fig. 5) can be obtained using a single value of

FIGURE 3. The intensities of the (1,1,3) and (2,1,1) superlattice
Bragg peaks in calcite, measured using neutron diffraction by Dove
and Powell (1989). Note that the data are plotted with both axes on
logarithmic scales to bring out the power law behavior. The fitted lines
show the results of a fit to both data sets simultaneously, with the critical
exponent determined as β = 0.240(8).

FIGURE 4. The intensities of superlattice Bragg peaks of NaNO3.
Filled circles = (123) measured using X-ray scattering (Schmahl and
Salje 1989).  Open circles = (113) measured using neutron scattering
(Payne et al. 1997). The fitted line shows a regime of β = 0.228(2)
crossing over to a regime of β = 0.34(2) at t ≈ 10–2. The temperature
scale is again shown in units of reduced temperature, t, with Tc = 553.7
K for the Schmahl et al. data and Tc = 548.5 K for the Payne et al. data.
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β over the entire temperature range they analyzed (200 to 550
K), and with Tc = 553 K. The exponent is determined as β =
0.22(1), again consistent with the two-dimensional XY model.
Therefore no convincing evidence exists for a crossover from
β = 0.25 to β = 0.22 in NaNO3, and instead it is more likely that
β = 0.22 holds over the whole two-dimensional critical range.

Heat capacity and thermal expansion

A large lambda anomaly in the heat capacity of NaNO3 is
seen at Tc [e.g., Reinsborough and Whetmore (1967) and Jriri
et al. (1995)], similar to that which occurs at a conventional
magnetic phase transition. In Figure 6, the above data sets were
fits to the following power-law:

∆C ∝ t –α, (6)

where ∆C is the excess heat capacity due to the phase transi-
tion, and α is the critical exponent. The experimental values of
α (Table 1) are in good agreement with each other, and with
the expectations of the two-dimensional XY model, see below.

In 1987, in an unpublished heat capacity study, B. Wruck
apparently determined α = 0.56(1), which is somewhat higher
than my values listed in Table 1. Poon and Salje (1988) point
out that Wruck’s value of α is roughly consistent with that for
the three-dimensional 3-state Potts model (for which the theo-
retical prediction is α ≈ 0.54). Obtaining accurate critical ex-
ponents from heat capacity data is notoriously difficult though,
due to problems with ascertaining the “baseline” underneath
the lambda anomaly, which comes from the non-critical lattice
vibrations. Poon (1988) explains that Wruck used a lattice dy-
namical model to obtain his baseline, rather than the more com-
mon ad hoc method of extrapolating from temperatures far from
Tc. Problems can certainly arise with this latter method, par-
ticularly when the lambda anomaly extends over a large range
of temperature, as in NaNO3, but the more recent very high-
resolution data of Jriri et al. (1995) make it clear that there is a
significant pre-melting effect in NaNO3. This means that the

FIGURE 5. The spontaneous strain data of Reeder et al. (1988) with
a fitted line where the critical exponent was determined as β = 0.22(1).

FIGURE 6. Heat capacity of NaNO3. Top, data of Reinsborough
and Whetmore (1967). Bottom, data of Jriri et al. (1995), fits are to
Equation 6. Filled circles represent data taken below Tc. Open circles
data above Tc. The data are not linear, even on double logarithmic axes,
because the non-critical background is included.

baseline must have a convex shape underneath the lambda
anomaly; note that the fits shown in Figure 6 include such a
baseline. However, conventional lattice dynamics can only pre-
dict a concave shape to the baseline of the heat capacity as it
asymptotes to the Dulong-Petit value at high temperatures. Hence,
an incorrect baseline could be the origin of Wruck’s anomalously
high determination of α. In any case, Wruck’s data and analysis
have unfortunately never been published, and so we must treat
this reported value of α = 0.56(1) with caution.

The temperature dependence of the relative thermal expan-
sion coefficients is expected to be roughly proportional to ∆C/T,
which means that a further determination of the α critical ex-
ponent can be made for comparison with the heat capacity. In
Figure 7, the thermal expansion data of Takeuchi and Sasaki
(1992) give α = 0.34(1), in excellent agreement with the val-
ues determined from the heat capacity data. No baseline has
been used in obtaining these fits.

There are no exact calculations of the heat capacity of the
two-dimensional XY model, and so evidence from Monte Carlo
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calculations (e.g., Tobochnik and Chester 1979; Harris et al.,
manuscript in preparation) and experimental work is relied on.
A truly two-dimensional XY system will have no three-dimen-
sional ordering at Tc. Using Monte Carlo simulations, a peak is
observed in the heat capacity which has a very similar shape to a
conventional lambda anomaly, but with a slightly rounded top
for small reduced temperatures (t < 10–2). The peak temperature
is weakly dependent on the system size, but is always slightly
higher than Tc. Nevertheless, an effective critical exponent can
be determined over a range of reduced temperature similar to
that over which β = 0.23 holds. This effective exponent turns out
to be α = 0.36(3) (Harris et al., manuscript in preparation). In
experiment, there will always be a crossover to three-dimensional
ordering very close to Tc, and the end result is to produce a sharp
spike to the rounded two-dimensional XY anomaly. There are

numerous magnetic examples of this behavior, such as
BaNi2(PO4)2, whose behavior corresponds very closely to the
two-dimensional XY model, and has a well-defined lambda
anomaly in the heat capacity (Regnault et al. 1980).

DISCUSSION

The various experimental results and predictions for the
values of the critical exponents determined here are summa-
rized in Table 1. Agreement between the experimental deter-
minations of both α and β with the two-dimensional XY model
are excellent. Althought there is a clear crossover to three-di-
mensional behavior in the superlattice intensity data of NaNO3

(Fig. 4), no such crossover is apparent in the heat capacity.
This is perhaps due to insufficient experimental resolution.

The above analysis shows that there is little reason to be-
lieve that the phase transitions in calcite and NaNO3 are
tricritical from the basis of any of the published experimental
data, which instead are all at least as consistent with two-di-
mensional XY behavior. The two-dimensional XY model has
the distinct advantage that it is readily identifiable with the
physical properties of both calcite and NaNO3, namely that the
orientational order-disorder is driven by continuous planar ro-
tations of the carbonate and nitrate groups, and that the inter-
actions are strongly two dimensional in nature. Furthermore,
the tricritical model has a distinct disadvantage, because it is
highly unlikely to apply simultaneously to both calcite and
NaNO3, and has no obvious physical origin.

We can also refute the suggestion that competing interac-
tions are responsible for the critical behavior of these materi-
als. Whereas recent work has shown that characteristic
fluctuations into a non-critical phase occur at the F-point of
reciprocal space for both calcite and NaNO3 (Lynden-Bell et
al. 1989; Dove et al. 1992; Hagen et al. 1992; Harris 1993;
Ferrario et al. 1994; Harris et al. 1998a, 1998b), they clearly
have no significant effect on the observed critical exponents,
which instead correspond simply to the universality classes
(two-dimensional XY and three-dimensional Ising/XY) derived
above. The crossover previously claimed to occur between β =
0.25 to β = 0.22 in NaNO3 is not supported by the experimental
evidence, but a clear crossover to three-dimensional behavior
(where β = 0.34) does appear to occur in the superlattice inten-
sities close to Tc. No evidence of a similar crossover to three-
dimensional behavior has yet been observed in calcite, but this
is probably due to the experimental difficulties associated with
preserving calcite intact close to Tc.
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