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Three- and five-quantum’O MAS NMR of forsterite Mg,SiO,
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ABSTRACT

Three- and five-quantutiO MAS NMR experiments are used to resolve fully the three crystallo-
graphically distinct oxygen species in forsterite (Bi,). The chemical shift and quadrupolar pa-
rameters extracted from these spectra are compared with the literature values obtained using
conventional’0O MAS and dynamic-angle-spinning (DAS) NMR.

INTRODUCTION ing CCl, was then removed by heating and the resulting
Mg(OH), powder dehydrated under Ar at 58D for 12 hours

Forsterite (MgSiQ,) is the Mg end-member of the olivine ) h : ’ -
to give MgO in ~100% yield. For Sixhe enriched water was

solid solution Mg_FeSiO, and, in its slightly impure form, X
Mg, sF.,SiO,, is considered the principal component of th@dded to excess SiCand refluxed under dry Nor Ar for 4
Earth’s upper mantle. Forsterite has been studiédbNMR hOl_JrS' The excess SiGas removed by evaporation an_d the
(Schramm and Oldfield 1984; Fritsch et al. 1986) and highnité solid heated under Ar at 1160 for 12 hours to give
resolution spectra of the powdered solid have been obtaif@P"1y crystalline Si@in ~66% yield. Finally, stoichiometric

by using double rotation (DOR) and dynamic angle spinnir‘?’dm"mts of MgO and SiQvere mixed, pressed into a pellet,

(DAS) to remove inhomogeneous second-order quadrupo?:ﬂd heated at 150€ under N or Ar for 12 hours. The prod-

broadening (Mueller et al. 1991, 1992). We are using multipldCt Was analyzed by X-ray diffraction, with several grinding
quantum magic angle spinning (MQMAS) (Frydman anand heating steps required to produce a sample free of impu-
Harwood 1995; Fernandez and Amoureux 1995), a recenfffy Phases. _
developed alternative to DOR and DAS, to resolve crystallo- +O NMR experiments were performed at a Larmor frequency
graphically distinct oxygen species in #® NMR spectra of Of Vo = 54.2 MHZ on a Bruker MSL 400 spectrometgy 9.4
various dense silicates. Several general accounts of MQMK% The forsterite was packed in a 4 mm MA_S rqtor and spun at
exist in the literature (Massiot et al. 1996; Brown and Wimperi~s7'2 kHZ_' The recycl_e delay was 1 s. A calibration experiment
1997; Kentgens 1997) and the reader is referred to these 38O yielded a rad|ofr.equ§ncy field strengtmg)_f: 80 kHz
both theoretical and practical details of the basic experimef" e MAS probe used in this work. The conventiéf@MAS
Here, we present the three- and five-quanti@ MAS NMR spectrum of forsterite (Flg. 1) reveals a qomposﬂg peak,
NMR spectra of isotopically enriched synthetic forsterite anrtFntered ord = 50 ppm (relative to D), that displays line-

compare the chemical shift and quadrupolar parameters m@pe features chargcteristic of inhomogerleous second-or.der
obtain with those found using conventio#@ NMR and’O quadrupolar broadening. To resolve the distinct oxygen species

DAS NMR. Although several three-quantdi® MAS NMR contributing to this peak, three- and five-quantt®MAS NMR

studies of zeolites and silicate glasses have appeared recetifFtra (Fig. 2) were recorded using the optimized phase-modu-
(Dirken et al. 1997; Amoureux et al. 1998; Schaller and

Stebbins 1998; Wang and Stebbins 1998; Xu et al. 1998), the

present work is a particularly striking illustration of the re-

markable site resolution that can be achieveddnNMR by

three- and five-quantum MAS.

EXPERIMENTAL PROCEDURE

As precursors to the synthesis@-labeled forsterite, MgO
and SiQ were first synthesized usingfD (35+%, Cambridge
Isotope Laboratories, Inc.). For MgO, the labeled water was
added to a stoichiometric amount of {dgin CCL, under dry
N, or Ar, and stirred for several hours. The reaction-moderat-
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*E-mail: stephen.wimperis@chem.ox.ac.uk FIGURE 1. Conventionat’'O MAS NMR spectrum of forsterite.
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1997). The projections onto thedxes reveal the conventional
70 MAS spectrum of forsterite, somewhat distorted by the
multiple-quantum excitation and reconversion processes (es-
pecially in Fig. 2b), while, as might be anticipated from the
crystal structure (Hazen 1976), thegfojections reveal three
narrow peaks with intensities approximately in the ratio 1:2:1.
20k - Note that, although fully resolved, these three peaks span a F
chemical shift range of only ~10 ppm (~540 Hz) in Figure 2a
i g' ] and ~40 ppm (~2200 Hz) in Figure 2b, both corresponding to
40F 1 ~18 ppm in the Ffrequency scale used by Amoureux and
Fernandez (1998).
The F frequency dispersion of the peaks in a five-quantum
60k, P ST —— 0‘ split-t; MAS spectrum of ah = 5/2 nucleus is a factor of 155/
£, (ppm) 37 = 4.2 times greater than in the corresponding three-quan-
tum spectrum (Brown et al. 1999). However, this increased dis-
persion does not translate fully into increased resolution in F
because of a concomitant increase in the five-quantume-
width (Amoureux and Fernandez 1998; Brown et al. 1999).
b Furthermore, as a result of the relative inefficiency of the five-
guantum excitation and reconversion pulses, the five-quantum
70 MAS NMR spectrum (Fig. 2b) has a poorer signal-to-noise
ratio than the three-quantum spectrum (Fig. 2a). Nevertheless,
a0k - _ i the five-quantum spectrum is a useful adjunct to the three-quan-
tum results as it provides a second, independent soutd@ of
g I — chemical shifts and quadrupolar parameters.
160 = < - - The position of the center of gravity of a ridge line shape in
- the | = 5/2 MQMAS spectra is given by

of
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FIGURE 2. (a)Three- andb) five-quantum’o MAS NMR spectra for the three-quantum split-spectrum (Brown 1997) and
of forsterite recorded using phase-modulated s$pIMQMAS
experiments. The displayed &nd F spectral widths aréa) 2.5% 5 85 160 16_ O
kHz, extracted from the full 18 20 kHz spectrum, an(b) 10 x 5 (51152) = E@écs +m o:5cs_E Qe
kHz, extracted from the full 5& 20 kHz spectrum. I, 576
acquisitions were averaged for each of L,A8crements, while itb, . .
2560 acquisitions were averaged for each of 10@ctementsTotal  for the five-quantum split: spectrum (Brown 1997; Brown et
experiment timesta) 21 h;(b) 71 h. Contour levelga) 4, 8, 16, 32, al. 1999). The isotropic chemical shifs, and isotropic sec-
and 64%ib) 8, 16, 32, and 64%. Spinning sidebands in tedjection ond-order shift parametedy,, can thus be determined by mea-
in b are marked with an asterisk. suring &, and &,, the position of the ridge in the Bnd

frequency dimensions (Massiot et al. 1996), in either the three-

lated splitt, MQMAS experiments appropriate for a spin5/2  OF five-quantum MAS .spectrlum: The second-order shift param-
nucleus described in Figure 14b of Brown and Wimperis (1997310 (in parts per million) is given for a spirs 5/2 nucleus

@

and Figure 3 of Brown et al. (1999), respectively. by 8¢ = (7_5 Pglvo)z. The “quadrupolar product” (Muell_er et al.
1992)P, is given byPq = Cq 1+124, whereCq = €qQ/h is the
RESULTS AND DISCUSSION quadrupolar coupling constant andis the asymmetry. The

In each of the two-dimensional spectra (Fig. 2), the thr¥8!Ues 0®csandP, extracted in this manner are given in Table
crystallographically distinct oxygen species are resolved t;'y uncertalntleg, given in parentheses, were estimated from a
their isotropic chemical and second-order quadrupolar shifréad of possibig ands, values.
in the K frequency dimension, whereas the second-order broad-The separate quadrupolar paramet€sandn, are more
ening of each individual’O resonance is retained in the pinformative than the produ, and can be extracted directly
dimension in the form of a “ridge” line shape. Note that, ifom MQMAS spectra by fitting the individual inhomogeneously
splitt; MQMAS experiments, the second-order broadening §cond-order broadened ridge line shapes. Owing to the poorer
fully refocused at the end of thgevolution period of the two- Signal-to-noise ratio in the five-quantum experiment, it was only
dimensional experiment and that, as a result, it has not b®&3siPle to apply this method to the three-quantum MAS spec-
necessary to apply a shearing transformation to these speHHH‘- The three_ experlmen_tal line shapes and their computer fits
to obtain solely isotropic shifts in, kBrown and Wimperis @' shown in Figure 3, while ti@&, andn values found for the
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TABLE 1. YO isotropic chemical shifts (dcs), quadrupolar products
a b c (Pg), quadrupolar coupling constants (Co) and asymme-
tries (n) for the three oxygen species in forsterite
(assigned as 02, O3, and O1 in order of decreasing cs)
Source Ocs (ppm) Py / MHz Cq | MHz n
Three-quantum 64(1) 2.6(1) 2.5(1) 0.4(1)
[ MAS (Fig. 2a) 61(1) 2.4(1) 2.5(1) 0.2(1)
1 kHz 48(1) 2.8(1) 2.9(1) 0.3(1)
Five-quantum 63(1) 3.0(2) - -
’ - MAS (Fig. 2b) 61(1) 2.7(1)

46(2) 3.1(2) - -
Conventional 62(1) - 2.35 1.0
MAS* 61(1) - 2.35 0.2
d e f 47(1) - 2.70 0.3
Single crystal - - 2.53(2) 0.39(1)
NMRt - - 2.42(2) 0.18(1)
- - 2.77(2) 0.28(2)
DASt 72(2) 3.3(1) - -
64(2) 2.8(2) - -
49(2) 3.0(2) - -
Ab initio - - 2.43 0.44
FIGURE 3. (a, b, c)Cross sections parallel to the dis through calculation§ - - 2.29 0.22

- 2.70 0.30

the three second-order broadened ridge line shapes in the three-quant

oL —
70 MAS NMR spectrum of forsterite (Fig. 2a). The line shap@iﬁk;ihmgl 2?_1%32;“ (1984).

correspond to those oxygen species \(aflidcs = 64ppm,(b) 61 ppm, 1+ Mueller et al. (1992).
and(c) 48 ppm.(d, e, f) The corresponding computer fits (calculatecd Winkler et al. (1996).
line shapes), yielding th€, andn values given in Table 1. The

displayed spectral width is 6 kHz in each case, while all peak heights

have been normalized. Since theC, andP, values for the three oxygen species are simi-
lar, we can assume that the MQMAS peak intensities are ap-
proximately quantitative. In this case, the O3 peak is

three oxygen species are given in Table 1; uncertainties warambiguously identified from the itensity ratio and, accord-

estimated using a combination of (1) multiple line shape fittingsgly, the peak of similad.s may be assigned to O2.

with different starting values and (2) a subjective assessment
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