Influence of temperature, pressure, and chemical composition on the electrical conductivity of granite

LIDONG DAI¹, HAIYING HU¹, HEPING LI^{1,*}, JIANJUN JIANG¹ AND KESHI HUI¹

¹Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550002, China

ABSTRACT

The electrical conductivities of granites with different chemical compositions $[X_A = (Na_2O + K_2O + CaO)/SiO_2 = 0.10, 0.13, 0.14, and 0.16 in weight percent] were measured at 623–1173 K and 0.5 GPa in a multi-anvil high-pressure apparatus using a Solartron-1260 Impedance/Gain Phase analyzer within a frequency range of <math>10^{-1}-10^{6}$ Hz. The conductivity of the granite sample with $X_A = 0.13$ was also measured at 0.5–1.5 GPa. The results indicate that pressure has a very weak influence on the electrical conductivity in the stability field of granite, whereas increases in temperature and the value of X_A produce dramatic increases in the electrical conductivity. For the granite samples with $X_A = 0.16$ and 0.13, the activation enthalpies are 1.0 eV above 773 K and 0.5 eV below 773 K, suggesting that impurity conduction is the dominant conduction mechanism in the lower-temperature region. For the granites with $X_A = 0.14$ and 0.10, the activation enthalpy is 1.0 eV over the whole temperature range, suggesting that only one conduction mechanism dominates the conductivity and activation enthalpy on X_A at high temperatures, we propose that intrinsic conduction is the dominant conduction mechanism dominates the conductivity and activation enthalpy on X_A at high temperatures, we propose that intrinsic conduction is the dominant conduction mechanism to noductivity and activation mechanism in all samples, and that K⁺, Na⁺, and Ca²⁺ in feldspar are the probable charge carriers controlling the conductivity. All conductivity data at high temperatures can be fitted to the general formula

$$\sigma = \sigma_0 X_A^{\alpha} \exp\left(-\frac{\Delta H_0 + \beta X_A^{\gamma}}{kT}\right)$$

where σ_0 is the pre-exponential factor; α , β , and γ are constants; ΔH_0 is the activation enthalpy at very small values of X_A ; *k* is the Boltzmann constant; and *T* is the temperature. The present results suggest that the granite with various chemical compositions is unable to account for the high conductivity anomalies under stable mid- to lower-crust and southern Tibet.

Keywords: Electrical conductivity, granite, composition, temperature