American Mineralogist, Volume 99, pages 98-101, 2014

The sound velocity measurements of Fe₃S

SEIJI KAMADA^{1,2,*}, EIJI OHTANI¹, HIROSHI FUKUI^{3,4}, TAKESHI SAKAI¹, HIDENORI TERASAKI^{1,5}, SUGURU TAKAHASHI¹, YUKI SHIBAZAKI¹, SATOSHI TSUTSUI⁶, ALFRED Q.R. BARON^{3,6}, NAOHISA HIRAO⁶ AND YASUO OHISHI⁶

¹Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
²Department of Geology, University of Illinois at Urbana-Champaign, 1301 West Green Street, Urbana, Illinois, 61801, U.S.A.
³Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
⁴Graduate School of Material Science, University of Hyogo, 3-2-1, Kamigori, Hyogo 678-1279, Japan
⁵Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
⁶Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan

ABSTRACT

We measured the sound velocity of Fe₃S at room temperature up to 85 GPa employing inelastic X-ray scattering to better constrain the constitution of the inner core. The density of Fe₃S was also determined by X-ray diffraction under the same conditions. The relation of the P-wave velocity (v_P) and density (ρ) of Fe₃S follows Birch's law, $v_P(m/s) = 1.14(5) \times \rho(kg/m^3) - 2580(410)$. Based on Birch's law determined here for Fe₃S and that for ϵ -Fe reported previously, we found that sulfur decreases both density and compressional velocity of hcp-Fe at the core pressure and 300 K.

Keywords: Fe₃S, inner core, sound velocity, Birch's law, inelastic X-ray scattering