Lavinskyite, K(LiCu)Cu₆(Si₄O₁₁)₂(OH)₄, isotypic with plancheite, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa

HEXIONG YANG^{1,*}, ROBERT T. DOWNS¹, STANLEY H. EVANS¹ AND WILLIAM W. PINCH²

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. ²19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.

ABSTRACT

A new mineral species, lavinskyite, ideally $K(\text{LiCu}^{2+})\text{Cu}_{6}^{2+}(\text{Si}_{4}\text{O}_{11})_{2}(\text{OH})_{4}$ (IMA 2012-028), has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, South Africa. Associated minerals include wesselsite, pectolite, richterite, sugilite, and scottyite. Lavinskyite crystals are tabular [parallel to (010)]. The mineral is light blue, transparent with very pale blue streak and vitreous luster. It is brittle and has a Mohs hardness of ~5; cleavage is perfect on {010} and no parting was observed. The measured and calculated densities are 3.61(3) and 3.62 g/cm³, respectively. Optically, lavinskyite is biaxial (+), with $\alpha = 1.675(1)$, $\beta = 1.686(1)$, $\gamma = 1.715(1)$, $2V_{meas} = 64(2)^{\circ}$. An electron microprobe analysis produced an average composition (wt%) of SiO₂ 42.85(10), CuO 46.13(23), K₂O 4.16(2), MgO 1.53(17), Na₂O 0.27(4), BaO 0.18(6), and MnO 0.08(1), plus Li₂O 1.38 from the LA-ICP-MS measurement and H₂O 3.22 (added to bring the analytical total close to 100%), yielding a total of 99.79% and an empirical chemical formula (K_{0.99}Ba_{0.01})_{\Sigma=1.00}(Li_{1.04}Cu_{0.93}Na_{0.10})_{Σ=2.07} (Cu_{5.57}Mg_{0.43}Mn_{0.01})_{Σ=6.01}(Si_{4.00}O₁₁)₂(OH)₄.

Lavinskyite is isotypic with plancheite, $Cu_8(Si_4O_{11})_2(OH)_4 \cdot H_2O$, an amphibole derivative. It is orthorhombic, with space group *Pcnb* and unit-cell parameters a = 19.046(2), b = 20.377(2), c = 5.2497(6) Å, and V = 2037.4(4) Å³. The key difference between lavinskyite and plancheite lies in the coupled substitution of K⁺ and Li⁺ in the former for H₂O and Cu²⁺ in the latter, respectively. The structure of lavinskyite is characterized by the undulating, brucite-like layers consisting of three distinct octahedral sites occupied mainly by Cu. These layers are sandwiched by the amphibole-type double silicate chains extending along the *c* axis, forming a sheet structure of compact silicate-Cu-silicate triple layers. Adjacent sheets are linked together by K and M4 (= Cu + Li) cations, as well as hydrogen bonding. The M4 site is split, with Cu and Li occupying two different sites. Lavinskyite exhibits more amphibole-like structural features than plancheite, as a consequence of K in the large cavity between the two back-to-back double silicate chains.

Keywords: Lavinskyite, K(LiCu)Cu₆(Si₄O₁₁)₂(OH)₄, plancheite, crystal structure, X-ray diffraction, Raman spectra