Structural and dynamical relationships of Ca²⁺ and H₂O in smectite/²H₂O systems GEOFFREY M. BOWERS^{1,2,*}, JARED W. SINGER², DAVID L. BISH³ AND R. JAMES KIRKPATRICK⁴

¹Division of Chemistry, College of Liberal Arts and Sciences, Alfred University, Alfred, New York 14802, U.S.A. ²Department of Materials Engineering, Kazuo Inamori College of Engineering, Alfred University, Alfred, New York 14802, U.S.A. ³Department of Geosciences, Indiana University, Bloomington, Indiana 47405, U.S.A. ⁴College of Natural Science, Michigan State University, East Lansing, Michigan 48824, U.S.A.

ABSTRACT

We present an X-ray diffraction and multi-nuclear (²H and ⁴³Ca) NMR study of Ca-exchanged hectorite (a smectite clay) that provides important new insight into molecular behavior at the smectite-H₂O interface. Variable-temperature ⁴³Ca MAS NMR and controlled humidity XRD indicate that Ca²⁺ occurs as proximity-restricted outer-sphere hydration complexes between -120 and +25 °C in a two-layer hydrate and at $T \le -50$ °C in a 2:1 water/solid paste. Changes in the ⁴³Ca NMR peak width and position with temperature are more consistent with diffusion-related processes than with dynamics involving metal-surface interactions such as site exchange. The ²H NMR signal between -50 and +25 °C for a two-layer hydrate of Ca-hectorite is similar to that of Na- and other alkali metal hectorites and represents ${}^{2}H_{2}O$ molecules experiencing anisotropic motion describable using the ${}^{2}H C_{2}/C_{3}$ jump model we proposed previously. ²H T₁ relaxation results for Ca- and Na-hectorite are well fit with a fast-exchange limit, rotational diffusion model for ²H₂O dynamics, vielding GHz-scale rotational reorientation rates compatible with the C_3 component of the C_2/C_3 hopping model. The apparent activation energy for ²H₂O rotational diffusion in the two-layer hydrate is greater for Ca-hectorite than Na-hectorite (25.1 vs. 21.1 kJ/mol), consistent with the greater affinity of Ca^{2+} for H₂O. The results support the general principle that the dynamic mechanisms of proximity-restricted H₂O are only weakly influenced by the cation in alkali metal and alkaline earth metal smectites and provide critical evidence that the NMR resonances of charge-balancing cations in smectites become increasingly influenced by diffusion-like dynamic processes at low temperatures as the charge density of the unhydrated cation increases.

Keywords: ⁴³Ca NMR, ²H NMR, dynamics, interface, clay, water