Hutcheonite, Ca₃Ti₂(SiAl₂)O₁₂, a new garnet mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion

CHI MA^{1,*} AND ALEXANDER N. KROT²

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ²Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mänoa, Honolulu, Hawai'i 96822, U.S.A.

ABSTRACT

Hutcheonite (IMA 2013-029), Ca₃Ti₂(SiAl₂)O₁₂, is a new garnet mineral that occurs with monticellite, grossular, and wadalite in secondary alteration areas along some cracks between primary melilite, spinel, and Ti,Al-diopside in a Type B1 Fractionation and Unidentified Nuclear effects (FUN) Ca-Alrich inclusion (CAI) *Egg-3* from the Allende CV (Vigarano type) carbonaceous chondrite. The mean chemical composition of type hutcheonite by electron probe microanalysis is (wt%) CaO 34.6, TiO₂ 25.3, SiO₂ 20.9, Al₂O₃ 15.7, MgO 2.1, FeO 0.7, V₂O₃ 0.5, total 99.8, giving rise to an empirical formula of Ca_{2.99}(Ti⁺_{1.53}Mg_{0.25}Al_{0.17}Fe²⁺_{0.05}V³⁺_{0.03})(Si_{1.68}Al_{1.32})O₁₂. The end-member formula is Ca₃Ti₂(SiAl₂)O₁₂. Hutcheonite has the *Ia*3*d* garnet structure with *a* = 11.843 Å, *V* = 1661.06 Å³, and *Z* = 8, as revealed by electron backscatter diffraction. The calculated density using the measured composition is 3.86 g/cm³. Hutcheonite is a new secondary phase in Allende, apparently formed by iron-alkali-halogen metasomatic alteration of the primary CAI phases like melilite, perovskite, and Ti,Al-diopside on the CV chondrite parent asteroid. Formation of the secondary Ti-rich minerals like hutcheonite during the metasomatic alteration of the Allende CAIs suggests some mobility of Ti during the alteration. The mineral name is in honor of Ian D. Hutcheon, a cosmochemist at Lawrence Livermore National Laboratory, California, U.S.A.

Keywords: Hutcheonite, $Ca_3Ti_2(SiAl_2)O_{12}$, new mineral, schorlomite group, garnet supergroup, Allende meteorite, carbonaceous chondrite, Ca-Al-rich inclusion