Melting and subsolidus phase relations in the system Na₂CO₃-MgCO₃±H₂O at 6 GPa and the stability of Na₂Mg(CO₃)₂ in the upper mantle

ANTON SHATSKIY^{1,2,*}, PAVEL N. GAVRYUSHKIN^{1,2}, IGOR S. SHARYGIN^{1,2}, KONSTANTIN D. LITASOV^{1,2}, IGOR N. KUPRIYANOV¹, YUJI HIGO³, YURI M. BORZDOV¹, KEN-ICHI FUNAKOSHI³, YURI N. PALYANOV^{1,2} AND EIJI OHTANI⁴

¹V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science, Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia ²Novosibirsk State University, Novosibirsk 630090, Russia

> ³Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Hyogo 678-5198, Japan ⁴Department of Earth and Planetary Material Science, Tohoku University, Sendai 980-8578, Japan

ABSTRACT

Phase relations in the Na₂CO₃-MgCO₃ system have been studied in high-pressure high-temperature (HPHT) multi-anvil experiments using graphite capsules at 6.0 ± 0.5 GPa pressures and 900–1400 °C temperatures. Sub-solidus assemblages are represented by Na₂CO₃+Na₂Mg(CO₃)₂ and Na₂Mg(CO₃)₂+MgCO₃, with the transition boundary near 50 mol% MgCO₃ in the system. The Na₂CO₃-Na₂Mg(CO₃)₂ eutectic is established at 1200 °C and 29 mol% MgCO₃. Melting of Na₂CO₃ occurs between 1350 and 1400 °C. We propose that Na₂Mg(CO₃)₂ disappears between 1200 and 1250 °C via congruent melting. Magnesite remains as a liquidus phase above 1300 °C. Measurable amounts of Mg in Na₂CO₃ suggest an existence of MgCO₃ solid-solutions in Na₂CO₃ at given experimental conditions. The maximum MgCO₃ solubility in Na-carbonate of about 9 mol% was established at 1100 and 1200 °C.

The Na₂CO₃ and Na₂Mg(CO₃)₂ compounds have been studied using in situ X-ray coupled with a DIA-type multi-anvil apparatus. The studies showed that eitelite is a stable polymorph of Na₂Mg(CO₃)₂ at least up to 6.6 GPa and 1000 °C. In contrast, natrite, γ -Na₂CO₃, is not stable at high pressure and is replaced by β -Na₂CO₃. The latter was found to be stable at pressures up to 11.7 GPa at 27 °C and up to 15.2 GPa at 1200 °C and temperatures at least up to 800 °C at 2.5 GPa and up to 1000 °C at 6.4 GPa. The X-ray and Raman study of recovered samples showed that, under ambient conditions, β -Na₂CO₃ transforms back to γ -Na₂CO₃.

Eitelite $[Na_2Mg(CO_3)_2]$ would be an important mineral controlling insipient melting in subducting slab and upwelling mantle. At 6 GPa, melting of the $Na_2Mg(CO_3)_2+MgCO_3$ assemblage can be initiated, either by heating to 1300 °C under "dry" conditions or at 900–1100 °C under hydrous conditions. Thus, the $Na_2Mg(CO_3)_2$ could control the solidus temperature of the carbonated mantle under "dry" conditions and cause formation of the Na- and Mg-rich carbonatite melts similar to those found as inclusions in olivines from kimberlites and the deepest known mantle rock samples—sheared peridotite xenoliths (190–230 km depth).

Keywords: Na₂CO₃-MgCO₃, eitelite, natrite, alkaline carbonates, high-pressure experiment, in situ X-ray diffraction, Raman, Earth's mantle