American Mineralogist, Volume 98, pages 1070-1073, 2013

LETTER

Kumdykolite, a high-temperature feldspar from an enstatite chondrite

PÉTER NÉMETH,^{1,2,*} STEPHEN W. LEHNER,^{2,3} MICHAIL I. PETAEV,⁴ AND PETER R. BUSECK^{2,3}

 ¹Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út 59-67, Hungary
²School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, U.S.A.
³Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.
⁴Department of Earth and Planetary Sciences, Harvard University, Solar, Stellar, and Planetary Sciences, Harvard-Smithsonian CfA, Cambridge, Massachusetts 02138, U.S.A.

ABSTRACT

We report the first occurrence of kumdykolite in a meteorite (Sahara 97072, EH3). This orthorhombic form of albite occurs in the core of a concentrically zoned metal-sulfide nodule. In contrast to the terrestrial kumdykolite, the meteoritic sample has a domain structure that is consistent with either orthorhombic (*Pmnn*) or monoclinic (*P*₂₁) space groups. The two symmetries are indicated by the presence or lack, respectively, of h + k = 2n + 1 reflections in [001] selected-area electron diffraction patterns, effects that likely result from different Si-Al ordering. *Pmnn* kumdykolite has only one tetrahedral site for Si and Al, whereas *P*₂₁ kumdykolite would have three tetrahedral sites for Si and one for Al. We propose that kumdykolite formed above 1300 K and cooled rapidly enough to preserve its unique structure. Apparently, the cooling rate varied on the scale of nanometers allowing the local development of Si-Al ordering.

Keywords: Kumdykolite, albite polymorph, enstatite chondrite, domain structure, Si-Al ordering