Occurrence of silica polymorphs nanocrystals in tuffaceous rocks, Province of the Mesa Central, Mexico, and their formation from subcritical Si-rich fluids

LIBERTO DE PABLO GALAN,1,⁎ MERCEDES DOVAL,2 ANGEL LA IGLESIA,3 JESUS SORIANO,4 and LOURDES CHAVEZ5

1Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., México
2Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
3Instituto de Geociencias CSIC-UCM, Facultad de Ciencias Geológicas, Avenida Antonio Novais 2, 28040 Madrid, Spain
4Laboratorio Central de Estructuras y Materiales CEDEX, Ministerio de Fomento, Madrid, Spain
5Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México

ABSTRACT

Cristobalite-tridymite blade nanocrystals cemented by SiO₂-glass and tridymite nanocrystals fill separately SiO₂-glass spherules released by explosive volcanism, in rhyolitic tuffs from the Province of the Mesa Central, Mexico. This paper presents the mineralogy of silica polymorphs, occurrence, and process of formation in the Province of the Mesa Central. The understanding of the origin of these pure SiO₂-polymorphs, their association with high-temperature minerals, fractionation of magmas, and role of volatiles contribute to our knowledge on silica minerals, their technological implications and damaging health effects.

Results indicate that a precursor magma, from which kyanite crystallized, partitioned into an immiscible Fe-rich magmatic liquid that crystallized Fe-cordierite, Fe-amphiboles, and fayalite and into a siliceous melt that led to low-temperature glasses of 78.22–80.01 wt% SiO₂ and Si/Al ratio 4.07–5.65. Presence of amphiboles, sulfur in cristobalite-tridymite crystals and alunite suggest association of volatiles. The crystallization of silica polymorphs is associated with the dissolution of water vapor and volatiles in the precursor magma, establishing a silicate melt–water system of two critical points, one of them at pressure and temperature near the critical point of water and another close to the critical point of SiO₂, and defining a critical curve between them and supercriticality at pressures and temperatures lower than the critical point of SiO₂. Decreasing the ambient conditions from supercritical to subcritical would have allowed the separation of liquid and gases and the crystallization of cristobalite-tridymite and tridymite nanocrystals from the vapor phase. Cristobalite single crystals were not formed and transformation of cristobalite and tridymite to quartz did not occur. We conclude that glasses did not crystallize cristobalite or tridymite. Components in excess of the pure phases precipitated as nanoparticles of siliceous glass forming agglomerates, some containing iron hydroxides and alunogen.

Keywords: Silica polymorphs, cristobalite, tridymite

INTRODUCTION

Mineral nanoparticles are released into the atmosphere in aerosols and mineral dusts of variable composition, mineralogy, and size distribution by explosive volcanic eruptions (Guo et al. 2004; Reich et al. 2010). They receive attention due to their importance in Earth systems (Hochella 2008; Hochella et al. 2008), as agents of elemental transport, their technological applications, their unique properties derived from their nano dimensions, and their deleterious health effects (Horwell and Baxter 2006). Among the mineral nanoparticles, silica polymorphs are of particular interest because of their limited abundance, technological applications, and negative effects on human health. This paper will discuss the mineralogy and formation of nanoparticles of silica polymorphs from the Province of the Mesa Central in Mexico. The significance of nanoparticles stems from the small number of atoms in the particle, a large fraction of which is at or near the surface and significantly modifies the particle’s structure, reactivity, and properties relative to the bulk material (Banfield and Zhang 2001; Hochella 2008).

Among silica minerals, nanoparticles of β-cristobalite have been recognized in volcanic ash from the Soufrière Hills Volcano in Montserrat, in the British West Indies (Woods 1995; Baxter et al. 1999) and in the respireable fraction of rhyolitic ash from the Chaitén Volcano in the Chilean Patagonia (Reich et al. 2010). They crystallize in the form of fibers from high-temperature reaction in the vapor phase between silica glass and reducing carbon monoxide released during eruption (Mori and Notsu 1997). In an attempt to explain the cristobalite formation mechanism, the syntheses of amorphous silica by laser ablation of mixtures of Si,