A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses

PENELOPE L. KING^{1,2,3,*} AND JESSICA F. LARSEN⁴

¹Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia
²Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.
³Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
⁴Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775, U.S.A.

ABSTRACT

Volatile contents of geologic glasses are used to model magma chamber and degassing processes, thus, there is considerable interest in small-scale analytical techniques for analyzing volatiles in glasses. Infrared (IR) spectroscopy has the advantage of determining volatile speciation in glasses (e.g., OH^- , molecular H_2O , molecular CO_2 , and CO_2^{2-}). However, sample preparation for the most common IR method used, micro-transmission IR spectroscopy, is complicated because glasses must be prepared as thin, parallel-sided wafers. Raman analysis, while valuable for Fe-poor samples, can be difficult to use for Fe-rich glasses.

We have calibrated a micro-reflectance infrared method for determining volatile species using calculated Kramers-Kronig absorbance (KK-Abs.) spectra that requires that only one side of a glass be polished. The method is easier to use than other reflectance methods where it is difficult to determine the baseline for the IR bands. Total H₂O wt% = $m \cdot (3600 \text{ cm}^{-1} \text{ KK-Abs.})$, where *m*, is the slope of the calibration line that is obtained from a fit to the data. The *m* value is related to the calculated refractive index, *n*, for a range of aluminosilicate glass compositions allowing the technique to be applied to samples with unknown calibration slopes. For calc-alkaline andesite glasses we determined calibration slopes for micro-reflectance IR measurements of molecular H₂O, molecular CO₂, and CO₃²⁻. The method has been calibrated for glasses with up to 6.76 wt% total H₂O (but is useful for glasses with more than 20 wt% total H₂O) and has been calibrated for glasses with up to 0.575 wt% total CO₂.

This technique provides a means to analyze volatile abundances in samples that are not possible to analyze or prepare for analysis with transmission micro-IR techniques. We have determined volatile contents in fragile samples such as cracked, vesicular, or crystal-bearing glasses formed by volcanic or impact processes or in high-pressure bubble nucleation experiments and H diffusion experiments. We have monitored H uptake during weathering of basaltic glasses that cannot be polished and determined volatiles in melt inclusions and pumice.

Keywords: IR spectroscopy, glass properties, new technique, volatiles, H₂O, CO₂, CO₃²⁻