Lusernaite-(Y), Y₄Al(CO₃)₂(OH,F)₁₁·6H₂O, a new mineral species from Luserna Valley, Piedmont, Italy: Description and crystal structure

CRISTIAN BIAGIONI,^{1,*} ELENA BONACCORSI,¹ FERNANDO CÁMARA,^{2,3} MARCELLA CADONI,^{2,3} MARCO E. CIRIOTTI,⁴ DANILO BERSANI,⁵ AND UWE KOLITSCH^{6,7}

¹Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy

²Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy

³CrisDi, Interdepartmental Centre for the Research and Development of Crystallography, Via P. Giuria 5, I-10125, Torino, Italy

⁴Associazione Micro-mineralogica Italiana, Via San Pietro 55, I-10073 Devesi/Cirié, Torino, Italy

⁵Dipartimento di Fisica, Università di Parma, Viale G.P. Usberti 7/a, I-43100 Parma, Italy

⁶Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Wien, Austria

⁷Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstraße 14, 1090 Wien, Austria

ABSTRACT

The new mineral species lusernaite-(Y), ideally $Y_4Al(CO_3)_2(OH,F)_{11} \cdot 6H_2O$, has been discovered in small fractures of the "Luserna Stone," a leucocratic orthogneiss belonging to the Dora-Maira massif, Western Alps, Italy. It occurs as colorless, thin platelets, with white streak and mica-like pearly luster, elongated along [100] and flattened on {010}, arranged in radiating aggregates. Lusernaite-(Y) is associated with aeschynite-(Y), albite, "chlorite," hematite, pyrite, quartz, and titanite. Lusernaite-(Y) has a perfect cleavage on {010} and a less marked one probably on {100}. Its calculated density is 2.810 g/cm³. In plane-polarized light, it is transparent, with parallel extinction and positive elongation. Lusernaite-(Y) is biaxial positive; its optical orientation is $\mathbf{a} = Z$, $\mathbf{b} = X$, $\mathbf{c} = Y$. Owing to the crystal morphology, only two refractive indices could be measured, corresponding to $\beta = 1.566(2)$ and $\gamma = 1.577(2)$.

Lusernaite-(Y) is orthorhombic, space group *Pmna*, with a = 7.8412(3), b = 11.0313(5), c = 11.3870(4)Å, V = 984.96(7) Å³, Z = 2. Main diffraction lines of the X-ray powder diffraction pattern are [*d* in Å, (*I*), (*hkl*)]: 11.02 (100) (010), 7.90 (49) (011), 5.66 (25) (002), 5.06 (24) (012), 4.258 (33) (112), 3.195 (27) (220), 3.095 (21) (212). Raman spectroscopy confirmed the presence of CO₃ groups (sharp peak at 1096 cm⁻¹); due to the very strong luminescence, the bands of the OH and H₂O groups could not be seen.

Chemical analyses by electron microprobe gave (wt%) $Al_2O_3 6.11$, $Y_2O_3 43.52$, $La_2O_3 0.02$, $Ce_2O_3 0.04$, $Nd_2O_3 0.03$, $Sm_2O_3 0.16$, $Gd_2O_3 1.39$, $Dy_2O_3 3.46$, $Er_2O_3 3.15$, $Yb_2O_3 2.09$, CaO 0.33, PbO 0.37, $H_2O 22.76$, $CO_2 9.95$, F 1.40, $O \equiv F -0.59$, sum 94.19; H_2O and CO_2 were determined from structure refinement. The empirical formula by assuming the presence of 2 (CO_3)²⁻ groups, 11 (OH,F)⁻ anions, and 6 H_2O groups, in agreement with micro-Raman and structural results, is ($Y_{3.41}Dy_{0.16}Er_{0.15}$ Yb₀₀₉Gd_{0.07}Ca_{0.05}Pb_{0.02}Sm_{0.01})_{23.96}Al_{1.06}(CO₃)_{2.00}(OH_{10.35}F_{0.65})_{211.00}·6H₂O.

The crystal structure was solved by direct methods and refined on the basis of 840 observed reflections to $R_1 = 6.8\%$. In the structure of lusernaite-(Y), yttrium and REE cations occupy two distinct sites, Y1 and Y2, both in eightfold coordination. The structure is built by layers parallel to (010), formed by chains of edge-sharing Y-centered polyhedra (Y1), which run along [100], and are connected along **c** through Al-centered octahedra. These chains are decorated on one side by corner-sharing chains of Y-centered polyhedra (Y2), and on the other side by CO₃ groups. Along [001] the decorated chains alternate their polarity.

Lusernaite-(Y), named after the type locality, the Luserna Valley, shows a new kind of structure among the natural carbonates of REE. Its origin is related to the circulation of hydrothermal solutions during the late-stage Alpine tectono-metamorphic events.

Keywords: Lusernaite-(Y), new mineral species, carbonate, yttrium, crystal structure, Luserna stone, Piedmont, Italy