AMORPHOUS MATERIALS: PROPERTIES, STRUCTURE, AND DURABILITY[†] Acceleration and inhibition effects of phosphate on phase transformation of amorphous calcium carbonate into vaterite

YUKI SUGIURA,^{1,3,*} KAZUO ONUMA,^{2,*} YUKI KIMURA,^{3,4} KATSUO TSUKAMOTO,³ AND ATSUSHI YAMAZAKI¹

¹Department of Environmental and Resources Engineering, School of Creative Science and Technology, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

²National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan ³Earth and Planetary Science, Department of Science, Tohoku University, Aoba-ku, Aramaki, Sendai, Miyagi 980-0845, Japan ⁴The Center of Interdisciplinary Research, Tohoku University, Aoba-ku, Aramaki, Sendai, Miyagi 980-0845, Japan

ABSTRACT

Phase transformation of amorphous calcium carbonate (ACC) into vaterite and its subsequent stability was investigated at a constant pH (\sim 8.2), ionic strength, and temperature that simulated the biological environment. Solutions containing the same concentrations of CaCl₂, Na₂CO₃, and tris(hydroxymethyl)aminomethane buffer and various concentrations of PO_4 (0–62.5 μ M) were prepared, and precipitates in the solutions were sampled at a constant interval to observe the morphology and type of calcium carbonate polymorphs that appeared. The change in the Ca-ion concentration over time, which served as a guide for phase transformation of ACC into crystalline phases, was measured in relation to the PO₄ concentration. The starting time of phase transformation was at the minimum point when the concentration was $\sim 2-3 \,\mu$ M. Vaterite spherulites consisting of needle-like crystals (0.5–2 μ m in length) formed only in this PO₄ range and survived the experimental procedure (~2.5 h). In contrast, the starting time of phase transformation increased exponentially with the PO₄ concentration when it was higher than 5 μ M. The vaterite spherulites and calcite crystals co-precipitated, and both polymorphs grew over time. The PO_4 was shown to be an accelerator for phase transformation from ACC into vaterite at low concentrations (Ca/PO₄ molar ratio <3000) and an inhibitor for transformation at high concentrations. We investigated the kinetics of vaterite formation in the presence of PO_4 and derived an advanced concept for cluster-based phase transformation. This investigation showed that the appearance and stability of calcium carbonate polymorphs is easily controlled by adjusting the PO₄ concentration.

Keywords: Vaterite, phase transformation, phosphate, biomineralization, amorphous calcium carbonate