American Mineralogist, Volume 97, pages 1808–1811, 2012

LETTER

In situ observation of the breakdown of magnetite (Fe₃O₄) to Fe₄O₅ and hematite at high pressures and temperatures

ALAN B. WOODLAND,^{1,*} DANIEL J. FROST,² DMYTRO M. TROTS,² KEVIN KLIMM,¹ AND MOHAMED MEZOUAR³

¹Institut für Geowissenschaften, Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany ³ESRF, BP 220, 38027 Grenoble, France

ABSTRACT

In situ synchrotron X-ray powder diffraction measurements using a Paris-Edinburgh pressure cell were performed to investigate the nature of the high-pressure breakdown reaction of magnetite (Fe₃O₄). Refinement of diffraction patterns reveals that magnetite breaks down via a disproportionation reaction to Fe₄O₅ and hematite (Fe₂O₃) rather than undergoing an isochemical phase transition. This result, combined with literature data indicates (1) that this reaction occurs at ~9.5–11 GPa and 973–1673 K, and (2) these two phases should recombine at yet higher pressures to produce an *h*-Fe₃O₄ phase. **Keywords:** Fe₄O₅, magnetite, phase transformation, high pressure