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Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements
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aBstract

The presence of boron in the structure of diamond is rare in nature, and even when present, reported 
values are ≤0.5 ppm. This study used various spectroscopic methods and time-of-fight (ToF-) SIMS 
to characterize and analyze for boron in natural type IIb blue diamonds, including the well-known 
Hope and the Blue Heart diamonds, and on one high-pressure, high-temperature annealed natural 
stone. Infrared spectroscopy measurements reveal uncompensated boron values as large as 1.72 ± 
0.15 ppm, which is significantly higher than the previously reported maximum of 0.5 ppm. ToF-SIMS 
analyses gave spot total boron concentrations as high as 8.4 ± 1.1 ppm for the Hope diamond to less 
than 0.08 ppm in other blue diamonds. By comparison, a type Ia diamond did not show detectable 
boron. ToF-SIMS analyses revealed strong zoning of boron in some diamonds, which was confirmed 
by mapping the uncompensated boron using synchrotron infrared spectroscopy. This greater range of 
boron concentrations compared to previous studies might be explained by the larger number of natural 
diamonds analyzed here, 78, compared to <10 samples reported in the literature. The samples in this 
study are all gem-quality diamonds, including some Intense to Fancy-Deep blue diamonds; color 
intensity, however, only loosely correlates with the boron content. Boron is also likely responsible 
for the phosphorescence emissions of type IIb diamonds, in the red at 660 nm and in the blue-green 
at 500 nm. Our results are consistent with previous work suggesting that the emissions are caused 
by donor-acceptor pair recombination processes involving boron and other defects. The exact nature 
of the phosphorescence processes is still not fully understood, but likely involves complex steps of 
charge carrier trapping and detrapping.
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introDuction
Diamonds are messengers from the inner Earth. Their hard-

ness and chemical inertness preserve trapped mineral inclusions 
during their ascent to the surface that are some of the deepest, 
most pristine, and oldest samples of the Earth’s mantle and pro-
vide excellent clues to the geodynamics of the deep and early 
Earth (e.g., Richardson et al. 1984, 1993; Pearson et al. 1998; 
Cartigny 2005; Stachel et al. 2005; Stachel and Harris 2009; 
Gurney et al. 2010). Although the included minerals have been 
extensively studied, the diamonds themselves and the processes 
by which they formed are less well understood (e.g., Collins 
1999; Cartigny 2005; Stachel et al. 2005). Studying defects and 
impurities in the diamond structure also might provide insights 
into the forces and conditions by which the diamonds formed. 
For example, one such impurity that is particularly intriguing 
is boron (B). Why is it found in only a tiny fraction of natural 
diamonds (less than 0.1% in the most productive deposit of B-
containing diamonds, the Premiere Mine in South Africa; King et 
al. 1998), and only in those with no (or low) nitrogen (N)? How 
is it incorporated into the diamonds, and what is its source, e.g., 
crustal material from subducting tectonic plates or pure mantle 

material? The rarity and unusual compositions of B-containing 
diamonds suggest that they might provide unique insights into 
processes at work in the Earth’s mantle. Investigations into the 
role of B in natural diamonds, however, face some daunting chal-
lenges. The low concentration of B in natural diamonds (typically 
<1 ppm) has inhibited meaningful B isotopic measurements, and 
even the determination of B concentrations in natural diamonds is 
difficult and rarely has been performed (Collins and Williams 1971; 
Lightowlers and Collins 1976; Von Windheim et al. 1993; Wynands 
et al. 1994; Fisher et al. 2009). The analyses that are reported typi-
cally are bulk values (obtained by destructive means) and provide 
no information about the distribution of the B in the diamonds. A 
first step in deciphering the story behind these diamonds is to better 
understand the characteristics of B in the diamonds. In the current 
study, we use various spectroscopic and analytical methods, includ-
ing time-of-flight secondary ion mass spectrometry (ToF-SIMS), to 
measure concentrations, and investigate the distribution and proper-
ties of B in natural diamonds, including the Smithsonian Institution’s 
renowned 45.52 carat Hope and 30.62 carat Blue Heart diamonds.

Boron is known to give a blue color to diamond (e.g., Col-
lins 1982), and this hue is one of the rarest and most valuable 
on the diamond market today. At a Sotheby’s auction in 2009, 
the price per carat reached $1.3 M for a 7.03 ct blue stone. Most * E-mail: asteriee@yahoo.fr


