Single-crystal Raman spectroscopy of natural paulmooreite Pb₂As₂O₅ in comparison with the synthesized analog

SILMARILLY BAHFENNE,¹ LLEW RINTOUL,¹ JÖRGEN LANGHOF,² AND RAY L. FROST^{1,*}

¹Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia ²Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden

ABSTRACT

The single-crystal Raman spectra of the natural mineral paulmooreite $Pb_2As_2O_5$ from the Långban, Filipstad district, Värmland province, Sweden, are presented for the first time. It is a monoclinic mineral containing an isolated $[As_2O_5]^{4-}$ dimer. Unpolarized single-crystal spectra of the natural and synthetic samples compare favorably with each other and are characterized by strong bands around 186 and 140 cm⁻¹ and three medium bands at 800–700 cm⁻¹. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated $[As_2O_5]^{4-}$ anion complex. Spectral comparison was also made with lead arsenites such as synthetic PbAs₂O₄ and Pb₂(AsO₂)₃Cl and natural finnemanite to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760–733 cm⁻¹ were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm⁻¹. The single-crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of A_g or B_g .

Keywords: Paulmooreite, finnemanite, single-crystal Raman spectroscopy, PbAs₂O₄, Pb₂(AsO₂)₃Cl