Nature of rehydroxylation in dioctahedral 2:1 layer clay minerals

ARKADIUSZ DERKOWSKI,1,* VICTOR A. DRICTS,2 AND DOUGLAS K. MCCARTY3

1Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1, PL-31002 Kraków, Poland
2Geological Institute of the Russian Academy of Science, Pyzhevsky per. 7, 119017 Moscow, Russia
3Chevron ETC, 3901 Briarpark, Houston, Texas 77042, U.S.A.

ABSTRACT

Rehydroxylation of the previously dehydroxylated dioctahedral 2:1 layer clay mineral occurs preferentially in specific sites within the former octahedral sheet. The rehydroxylation of dehydroxylated Al-rich and Al,Mg-rich 2:1 layers occurs as trans-vacant (tv) structural arrangements, regardless of whether the initial structure was tv or cis-vacant (cv). In nontronite (Fe-rich 2:1 layer clay), the dehydroxylate pseudo-cv structure is probably directly reconstructed into the rehydroxylated cv structure without migration of octahedral cations. Rehydroxylation occurs preferentially in the R3+·O-R3+ former octahedral structural arrangements (O = residual oxygen) over R2+·O-R (R = R3+ or R2+ = Al3+, Fe3+, or Mg2+, Fe2+). In the case of the R2+ octahedral substitution, the interlayer cation is attracted to the electrostatically undersaturated residual oxygen of the R3+·O-R arrangement, which blocks the ability of water molecules to pass through the ditrigonal cavity and rehydroxylate the previously dehydroxylated local arrangement. The pyrophyllite-like type of octahedral R2+·O-R3+ arrangements, formed due to the lack of tetrahedral substitution and resulting in the absence of interlayer cations, is thus favored for rehydroxylation over the mica-like R3+·O-R2+ arrangements where Al occurs in the tetrahedral sheet. The valence of the interlayer cation and the charge density of the 2:1 layer clay mineral, which controls the interlayer cation content, also affect the degree of rehydroxylation. Dehydroxylated 2:1 layer minerals with a high-rehydroxylation potential, including beidellite and illite, use all the adsorbed water molecules that persist above 200 °C for rehydroxylation; the water vapor from the ambient environment also becomes a source of H2O molecules for rehydroxylation. The high demand for water molecules to use for rehydroxylation results in a noticeable gain of mass in the temperature interval between 200 and 350 °C even during heating.

Keywords: Rehydroxylation, dehydroxylation, beidellite, montmorillonite, illite, aluminoceladonite, pyrophyllite

INTRODUCTION

Dehydroxylation

Dioctahedral 2:1 layer clay minerals have the characteristic structure of a sheet of octahedrally coordinated cations shared between two sheets of tetrahedrally coordinated cations. The octahedral sheet comprises three symmetrically independent cation sites differing in their arrangement of OH groups and O atoms coordinating octahedral cations. In the trans octahedra, the OH groups occupy opposite apices, whereas in the cis octahedra, the OH groups form a shared edge. Dioctahedral smectite structures may be pure trans-vacant (tv) or cis-vacant (cv) and comprise interstratified cv and tv layers (Tsipursky and Drits 1984). According to these authors, the beidellite and nontronite series has only a tv structure, whereas montmorillonite in which the layer charge is generated in the octahedral sheet may have either a cv or tv structure, but the cv montmorillonite occurs more commonly. Aluminoceladonite is considered to have a tv structure, similar to a most common illite; however, pure cv illite has been recognized in several environments along with cv illite fundamental particles in mixed-layered illite-smectite (Zviagina et al. 1985; Drits et al. 1993; Reynolds and Thomson 1993; McCarty and Reynolds 1995; Drits et al. 2006, 2010; Drits and Zviagina 2009).

During gradual heating over a broad temperature range (e.g., 25–1000 °C), 2:1 layer clay mineral structures exhibit two distinct mass-loss effects that emit water molecules. The low-temperature (≤250 °C) thermogravimetric (TG) effect is caused by the dehydration of adsorbed water molecules. However, in pure smectite, some of the water molecules adsorbed on interlayer cations persists even above 400 °C (El-Akkad et al. 1982; El-Barawy et al. 1986). The high-temperature TG effect from dehydroxylation occurs between 350 and 800 °C because of the liberation of a water molecule formed by two adjacent OH groups that leaves one residual oxygen atom in the structure:

\[(\text{OH})_n \rightarrow n \times \text{H}_2\text{O} + n \times \text{O} \] \hspace{1cm} (1)

where n is the number of water molecules eliminated during dehydroxylation.