Raman spectroscopy of titanomagnetites: Calibration of the intensity of Raman peaks as a sensitive indicator for their Ti content

PAVEL ZININ,^{1,*} LISA TATSUMI-PETROCHILOS,² LYDIE BONAL,¹ TAYRO ACOSTA,¹ JULIA HAMMER,² STUART GILDER,³ AND MIKE FULLER¹

¹Hawaii Institute of Geophysics and Planetology, Honolulu, Hawaii 96822, U.S.A.
²Department of Geology and Geophysics, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.
³Department of Earth and Environmental Sciences-Geophysics, Munich University, Munich 80333, Germany

ABSTRACT

A systematic study of the Raman spectra of the titanomagnetite solid-solution series (Fe_{3-x}Ti_xO₄) for x = -0.0, 0.2, 0.4, and 0.6 has been conducted. The samples showed combinations of five previously predicted Raman peaks at $-190, 310, 460, 540, and 670 \text{ cm}^{-1}$ that correspond to vibrational modes with $T_{2g}(1), E_g, T_{2g}(3), T_{2g}(2)$, and A_{1g} , respectively. The calibration of Raman spectra for titanomagnetite with known values of Ti concentrations reveals a strong dependence of relative intensity for the $T_{2g}(2)$ and $T_{2g}(3)$ modes on Ti concentration. The most prominent feature is the appearance and increase in the relative intensity of a $T_{2g}(3)$ peak above x = -0.2. On the other hand, the Raman peak for the $T_{2g}(2)$ mode gradually diminishes as Ti increases and nearly disappears at x = -0.6. Combining the two relative intensities potentially provides a sensitive indicator of Ti content. The technique was applied to study titanomagnetite in grains from Hana Volcanics and melatroctolite from Rhode Island.

Keywords: Titanomagnetites, Raman spectroscopy, Fe-Ti oxides, spinel