American Mineralogist, Volume 96, pages 1742-1747, 2011

New accurate elastic parameters for the forsterite-fayalite solid solution

F. NESTOLA,^{1,2,*} D. PASQUAL,¹ J.R. SMYTH,³ D. NOVELLA,⁴ L. SECCO,¹ M.H. MANGHNANI,⁵ AND A. DAL NEGRO¹

¹Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy ²CNR-IGG, UO-Padova, Via Gradenigo 6, I-35131 Padova, Italy ³Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309 U.S.A. ⁴Bayerisches Geoinstitut, Universität Bayreuth, D-95440, Bayreuth, Germany ⁵Hawaii Institute of Geophysics and Planetology, University of Hawaii, 1680 East-West Road, Honolulu, Hawaii 96822, U.S.A.

ABSTRACT

Three natural olivines with $Fo_{80}Fa_{20}$, $Fo_{71}Fa_{29}$, and $Fo_{62}Fa_{38}$ compositions were investigated in situ at high pressure by single-crystal X-ray diffraction using a diamond-anvil cell up to ~8 GPa at room temperature. The bulk modulus, K_{T0} , and its first pressure derivative, K', do not show any significant variation among the compositions investigated and, using the data on a further sample with $Fo_{92}Fa_8$ composition recently investigated in the same laboratory and using the same experimental technique, we obtain, for the first time, a single equation of state for the entire $Fo_{92}Fa_8$ - $Fo_{62}Fa_{38}$ compositional range. The equation has the following coefficients: $K_{T0} = 124.7(9)$ GPa and K' = 5.3(3) and can be used for thermodynamic calculations involving the most common mantle olivine compositions.

Keywords: Olivine, diffraction, pressure, elasticity