The crystal structure of δ-Al(OH)₃: Neutron diffraction measurements and ab initio calculations

MASANORI MATSUI,^{1,*} KAZUKI KOMATSU,² EMI IKEDA,¹ ASAMI SANO-FURUKAWA,^{3,4} Hirotada Gotou,³ and Takehiko Yagi³

¹School of Science, University of Hyogo, Kouto, Kamigori, Hyogo 678-1297, Japan
²Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
³Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
⁴Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

ABSTRACT

 δ -Al(OD)₃ powders were synthesized from Al(OD)₃ bayerite at 4 GPa and 523 K using a cubic press apparatus. Neutron powder diffraction analyses of δ -Al(OD)₃ at ambient conditions revealed that the crystals are orthorhombic with space group $P2_12_12_1$, not *Pnma* as reported previously based on X-ray diffraction data. The $P2_12_12_1 \delta$ -Al(OH)₃ structure contains seven independent atoms in the asymmetric unit, including one Al, three O, and three H atoms. The initial lattice parameters and the atomic positions of both Al and O were taken from previous X-ray structural analyses of the Pnma structure, while the positions of H were determined in the present study using ab initio calculations to (1) give the least energy among trial structural models for $P2_12_12_1\delta$ -Al(OH)₃, (2) accurately reproduce the measured lattice parameters of δ -Al(OD)₃, and (3) show reasonable energetic relations between the Al(OH)₃ polymorphs; namely, gibbsite is stable at ambient pressure, δ -Al(OH)₃ has the lowest enthalpy at pressure greater than 1.1 GPa, and both bayerite and η -Al(OH)₃ are metastable over the entire pressure range. Furthermore, we found that the structure of δ -Al(OH)₃ obtained from ab initio calculations is in good agreement with that derived from a Rietveld refinement of δ -Al(OD)₃, based on the present powder neutron diffraction data. The δ -Al(OH)₃ structure possesses one relatively long and two short O-H···O hydrogen bonds. Ab initio calculations also reveal that δ -Al(OH)₃ with space group $P2_{1}2_{1}2_{1}$ transforms to another high-pressure polymorph with space group *Pnma* at around 67 GPa, and that the two short hydrogen bonds in δ -Al(OH)₃ become both symmetric through the P2₁2₁2₁ to Pnma transformation, in which the protons are located at the midpoints of the O···O hydrogen bonds.

Keywords: Al(OH)₃, high pressure, neutron diffraction, ab initio calculations, symmetrical hydrogen bond