Yttriaite-(Y): The natural occurrence of Y₂O₃ from the Bol'shaya Pol'ya River, Subpolar Urals, Russia

STUART J. MILLS,^{1,2,*} PAVEL M. KARTASHOV,³ CHI MA,⁴ GEORGE R. ROSSMAN,⁴ MARGARITA I. NOVGORODOVA,⁵ ANTHONY R. KAMPF,⁶ AND MATI RAUDSEPP¹

¹Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
²Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
³Institute of Geology Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) of Russian Academy of Sciences, Staromonetnyi pereulok 35, 109017 Moscow, Russia
⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
⁵Fersman Mineralogical Museum, Leninskiy Prospekt 18(2), Moscow 117071, Russia
⁶Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

ABSTRACT

Yttriaite-(Y), ideally Y₂O₃, is a new mineral (IMA2010-039) from the alluvial deposits of the Bol'shaya Pol'ya River, Subpolar Urals, Russia. The new mineral occurs as isolated crystals, typically cubo-octahedra <6 μ m in size, embedded in massive native tungsten. Associated minerals include: copper, zircon, osmium, gold, and pyrite. The main forms observed are {100} and {111}. Due to the crystal size, physical properties could not be determined; however, the properties of synthetic Y₂O₃ are well known. Synthetic Y₂O₃ crystals are colorless to white with a white streak; crystals are transparent with an adamantine luster, while massive Y₂O₃ is typically translucent with an earthy luster. Synthetic Y₂O₃ has a Vickers hardness of 653.91, which corresponds to 5.5 on the Mohs scale. Synthetic Y₂O₃ crystals have good cleavage on {111}. Yttriaite-(Y) is isotropic; the refractive index measured at 587 nm on synthetic Y₂O₃ is n = 1.931. The empirical chemical formula (mean of 4 electron microprobe analyses) calculated on the basis of 3 O is: Y_{1.98}Dy_{0.01}Yb_{0.01}O₃. Yttriaite-(Y) is cubic, space group $Ia\overline{3}$, with parameters a = 10.6018(7) Å, V = 1191.62(7) Å³, and Z = 16. The five strongest lines in the powder X-ray diffraction pattern (measured on synthetic Y₂O₃ using synchrotron radiation) are $[d_{obs}$ in Å (*I*) (*hkl*)]: 3.0646 (100) (222), 1.8746 (55) (440), 1.5984 (38) (622), 2.6537 (26) (400), and 4.3356 (14) (211). The mineral name is based on the common name for the chemical compound, yttria.

Keywords: Yttriaite-(Y), new mineral, yttria, tungsten, Bol'shaya Pol'ya River, Subpolar Urals, Raman spectroscopy, electron back scatter diffraction