Phase boundary between perovskite and post-perovskite structures in MnGeO₃ determined by in situ X-ray diffraction measurements using sintered diamond anvils

DAISUKE YAMAZAKI,^{1,*} EIJI ITO,¹ TOMOO KATSURA,¹ TAKASHI YOSHINO,¹ SHUANGMENG ZHAI,² Hiroshi Fukui,³ Anton Shatskiy,⁴ Xinzhuan Guo,¹ Shuangming Shan,¹ Takuo Okuchi,¹ Yoshinori Tange,⁵ Yuji Higo,⁶ and Ken-ichi Funakoshi⁶

¹Institute for Study of the Earth's Interior, Okayama University, Tottori, 682-0193, Japan
²School of Earth and Space Sciences, Peking University, Beijing, 100871, China
³School of Science, University of Hyogo, Hyogo, 678-1297, Japan
⁴Department of Earth and Planetary Materials Science, Tohoku University, Sendai, 980-8578, Japan
⁵Geodynamics Research Center, Ehime University, Ehime, 790-8577, Japan
⁶Japan Synchrotron Radiation Research Institute, Hyogo, 679-5198, Japan

ABSTRACT

To determine the phase boundary between the perovskite and post-perovskite structures in MnGeO₃, in situ X-ray observations were carried out at pressures of 57–68 GPa and temperatures of 1000–1900 K using the Kawai-type high-pressure apparatus equipped with sintered diamond anvils interfaced with synchrotron radiation. The phase boundary was determined to be P (GPa) = 39.2 + 0.013T (K) based on Tsuchiya's (2003) gold pressure scale. The Clapeyron slope, dP/dT, of 13(+12/–5) MPa/K, determined in the present study is larger that of MgGeO₃ and MgSiO₃.

Keywords: Post-perovskite, in situ X-ray observation, high pressure, phase boundary