Fe-Ti oxide-silicate (QUIlF-type) equilibria in feldspathoid-bearing systems

JULIAN SCHILLING,1 B. RONALD FROST,2 MICHAEL A.W. MARKS,1 THOMAS WENZEL,1 AND GREGOR MARKL1,*

1Institut für Geowissenschaften der Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
2Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, U.S.A.

ABSTRACT

Silicate-oxide equilibria (abbreviated as QUIlF) have proven to be very powerful tools for reconstructing the temperature and oxygen fugacity evolution of magmatic systems containing magnetite and ilmenite with olivine, quartz, or pyroxenes. In this paper, we extend these QUIlF equilibria to include rocks where silica activity is controlled by equilibria between feldspars and feldspathoids.

We present data on the orthomagmatic assemblage of titanomagnetite + ilmenite + feldspar + nepheline + compositionally variable olivine, which we call AUNIlF:

\[
\text{NaAlSi}_3\text{O}_8 + 4\text{Fe}_2\text{TiO}_4 = \text{NaAlSiO}_4 + 4\text{FeTiO}_3 + 2\text{Fe}_2\text{SiO}_4
\]

Albite Ulvøspinel Nepheline Ilmenite Fayalite

The AUNIlF reference curve (with unit activities for albite, nepheline, and fayalite) is stable at oxygen fugacities \(\geq 2 \) log units below the QUIlF surface at temperatures of about 700 to 800 °C, temperatures typical of late-magmatic stages. At temperatures \(> -800 ^\circ C \), the AUNIlF reference assemblage would only be stable at unrealistically low \(f_{O_2} \) conditions more than 5 log units below FMQ (where FMQ is the fayalite-magnetite-quartz buffer), which explains the rarity or absence of orthomagmatic AUNIlF assemblages. We determine the most reduced conditions indicated by displaced AUNIlF assemblage from Mont Saint-Hilaire (Quebec, Canada) to be \(\Delta FMQ = -1.15 \) at \(~800 ^\circ C \) (olivine is \(\text{Fa}_{67} \) and \(a_{SO_2} = 0.41 \)) and conclude that AUNIlF assemblages involving pure fayalite do not stably occur in terrestrial magmatic systems.

The stability field of naturally occurring AUNIlF assemblages is a function of albite, nepheline, and olivine compositions and is controlled by the ratio of silica activity to fayalite activity \((a_{SiO_2}/a_{Fa}) \). At values higher than \(~0.77 \) for \(a_{SiO_2}/a_{Fa} \), olivine is \(\text{Fa} < ~70 \) when silica activity is buffered by the nepheline-albite equilibrium. In these situations, AUNIlF is stable at oxygen fugacities \(\geq -1.15 \) (AFMQ). At values below \(a_{SiO_2}/a_{Fa} \), the AUNIlF equilibrium is shifted to lower oxygen fugacities and ilmenite becomes unstable relative to ulvøspinel. Analogous to the construction and application of AUNIlF, a QUIlF-type reaction curve for potassic systems (KULIlF) involving leucite and alkali feldspar is presented and applied to naturally occurring assemblages. Potassic rocks invariably crystalize forsteritic olivine in the presence of ilmenite and magnetite, reflecting higher oxygen fugacities during crystallization than their sodic counterparts. As a result of low fayalite component in olivine, the \(a_{SiO_2}/a_{Fa} \) ratio becomes \(\geq 4 \) in assemblages of potassic systems consisting of alkali feldspar, magnetite, leucite, ilmenite, and olivine.

Keywords: QUIlF, nepheline, leucite, feldspar, olivine composition, silica activity, oxygen fugacity, Mont Saint-Hilaire

INTRODUCTION

Because Fe-Ti oxides are prone to re-equilibration, especially in plutonic rocks, silicate-oxide equilibria abbreviated QUIlF (Frost et al. 1988) have been highly effective in retrieving the intensive parameters that govern the equilibration of igneous (and to a lesser extent, high-T metamorphic) rocks. These equilibria are based upon the reaction

\[
\text{SiO}_2 + 2\text{Fe}_2\text{TiO}_4 = 2\text{FeTiO}_3 + \text{Fe}_2\text{SiO}_4
\]

Quartz Ulvøspinel Ilmenite Fayalite

This so-called QUIlF equilibrium (Frost et al. 1988) is powerful because it combines two common oxygen-dependent equilibria.

\[
\begin{align*}
6\text{Fe}_3\text{O}_4 &= 4\text{Fe}_2\text{O}_3 + \text{O}_2 & (2) \\
2\text{Fe}_2\text{O}_3\text{SiO}_3 &= 3\text{Fe}_2\text{SiO}_4 + \text{O}_2 & (3)
\end{align*}
\]

Equilibrium 2, the iron-titanium oxide thermometer and oxybarometer (Buddington and Lindsley 1964), is prone to re-equilibration and works only in quickly chilled volcanic rocks.