Vorlanite (CaUVI)O\textsubscript{4}—A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia

Eugen V. Galuskin,1,* Thomas Armbruster,2 Irina O. Galuskina,1 Biljana Lazic,2 Antoni Wiariński,3 Viktor M. Gazeev,4 Piotr Dzierżanowski,5 Aleksandr E. Zadov,6 Nikolai N. Pertsev,4 Roman Wrzalik,3 Anatoly G. Gurbanov,4 and Janusz Janezcek1

1Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będziniska 60, 41-200 Sosnowiec, Poland
2Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
3August Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
4Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia
5Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
6OOO Sci.-Research Center “NEOCHEM,” Dmitrovskskoye Highway 100/2, Moscow, Russia

ABSTRACT

The new mineral vorlanite, (CaUVI)O\textsubscript{4}, \(D_{calc} = 7.29 \text{ g/cm}^3\), \(H = 4–5\), \(VHN_{10} = 360 \text{ kg/mm}^2\), was found near the top of Mt. Vorlan in a calcareous skarn xenolith in ignimbrite of the Upper Chegem caldera in the Northern Caucasus, Kabardino-Balkaria, Russia. Vorlanite occurs as aggregates of black platy crystals up to 0.3 mm long with external symmetry \(\text{Sm}\). The strongest powder diffraction lines are \([d(\text{Å})/hkl] : 3.107/(111), 2.691/(200), 1.903/(220), 1.623/(311), 1.235/(331), 1.203/(420), 1.098/(422),\) and \(1.010/(531)\). Single-crystal X-ray study gives isometric symmetry, space group \(\text{Fm\overline{3}m}\), \(a = 5.3813(2) \text{ Å}\), \(V = 155.834(10) \text{ Å}^3\), and \(Z = 2\). X-ray photoelectron spectroscopy indicate that all U in vorlanite is hexavalent. The mineral is isostructural with fluorite and uraninite (UVIO\textsubscript{2}). In contrast to synthetic rhombohedral CaUO\textsubscript{4}, and most UVI minerals, the UVI cations in vorlanite are present as disordered uranyl ions. \(^{10}\)CaII and \(^{18}\)OVI are disordered over a single site with average M-O = 2.33 Å.

Vorlanite is believed to be a pseudomorphic replacement of originally rhombohedral CaUO\textsubscript{4}. We assume that this rhombohedral phase transformed by radiation damage to cubic CaUO\textsubscript{4} (vorlanite). The new mineral is associated with larnite, chegemite, reinhardbraunsite, lakargiite, rondorfite, and wadalite, which are indicative of high-temperature formation (>800 °C) at shallow depth.

Keywords: Vorlanite, CaUO\textsubscript{4}, uranium, skarn, structure, Raman, XPS, Lakargi

INTRODUCTION

Vorlanite (CaUVI)O\textsubscript{4} [fluorite-type structure, \(\text{Fm\overline{3}m}, a = 5.3813(2) \text{ Å}\), \(V = 155.834(10) \text{ Å}^3\)] was found in 2008 in high-temperature skarns in the calcareous xenolith no. 7, hosted by ignimbrites of the Upper Chegem caldera in the Northern Caucasus, Kabardino-Balkaria, Russia. Vorlanite is another new mineral from altered xenoliths dispersed between Mt. Lagarky and Mt. Vorlan (coordinates 43°17′N 43°6.42′E; see geological map in Galuskin et al. 2009). They include calcio-olivine Ca\textsubscript{2}Si\textsubscript{O}\textsubscript{4} (Zadov et al. 2008), lakargiite Ca\textsubscript{2}Zr\textsubscript{O}\textsubscript{3} (Galuskin et al. 2008), chegemite Ca\textsubscript{3}Si\textsubscript{O}\textsubscript{4}\textsubscript{4}OH\textsubscript{2} (Galuskin et al. 2009), kunytyubeite Ca\textsubscript{3}Si\textsubscript{O}\textsubscript{4}F\textsubscript{2} (Galuskin et al. 2009), torutite Ca\textsubscript{4}Sn\textsubscript{2}Fe\textsubscript{2}Si\textsubscript{2}O\textsubscript{12} (Galuskin et al. 2010a), elbursite-(Zr) Ca\textsubscript{5}Zr4+Fe2+Fe2+O\textsubscript{12} (Galuskin et al. et al. 2010b), bitikleite-(SnAl) Ca\textsubscript{4}Sn\textsubscript{2}Al\textsubscript{2}O\textsubscript{12} and bitikleite-(ZrFe) Ca\textsubscript{5}Zr\textsubscript{5}Fe\textsubscript{2}O\textsubscript{12} (Galuskin et al. et al. 2010c), KNa\textsubscript{2}Li(Mg,Fe)\textsubscript{2}Ti\textsubscript{2}Si\textsubscript{2}O\textsubscript{24} (IMA2009-009), and Ca\textsubscript{2}Sn\textsubscript{2}O\textsubscript{5} (IMA2009-090).

Vorlanite stoichiometry is identical with the synthetic rhombohedral calcium uranate CaUO\textsubscript{4}. However, while hexavalent uranium in the latter has characteristic 2+6 coordination of oxygen, as known for the uranyl ion (UVIO\textsubscript{2}2+) (Loopstra and Rietveld 1969), the UVI cation in vorlanite is eightfold coordinated by equidistant O atoms, which is typical of the fluorite-type structure. In this respect, vorlanite is exceptional among UVI minerals because the great majority of them show order of linear (UVIO\textsubscript{2}2+) uranyl ions (Burns 1999, 2005).

Vorlanite, named after Mt. Vorlan, was approved as a new mineral species by CNMNC IMA in July 2009 (IMA2009-032). The type specimen of vorlanite is deposited in the Fersman Mineralogical Museum in Moscow, Russia (catalog no. 3838/1).

In this paper we provide a detailed description of vorlanite.

Methods of investigations

Crystal morphology and chemical composition of vorlanite and associated minerals were examined using optical microscopes, analytical electron scanning microscope Philips XL30 ESEM/EDAX (Faculty of Earth Sciences, University of Silesia) and electron microprobe Cameca SX100 (Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw). Electron-microprobe analyses of vorlanite were performed at 15 kV and 40–50 nA using the following lines and standards: Uβ for synthetic UO\textsubscript{2}, CaKα for wollastonite and diopside; FeKα for hematite. Raman spectra of single crystals of vorlanite were recorded using LabRAM HR800 (Jobin-Yvon-Horiba, Wrocław University of Technology) equipped with an 1800 line/mm grating monochromator, a charge-coupled device (CCD) Peltier-