Stability and bulk modulus of Ni₃S, a new nickel sulfur compound, and the melting relations of the system Ni-NiS up to 10 GPa

SATORU URAKAWA,^{1,*} RYOSUKE MATSUBARA,¹ TOMOO KATSURA,^{2,†} TOHRU WATANABE,³ AND TAKUMI KIKEGAWA⁴

¹Department of Earth Sciences, Okayama University, Kita-ku, Okayama 700-8530, Japan ²The Institute for the Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan ³Department of Earth Sciences, Toyama University, Gofuku, Toyama 930-8555, Japan ⁴Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

ABSTRACT

We found a new nickel sulfide that is isostructural with Fe₃S. The synthesized nickel sulfide is a non-stoichiometric compound with a Ni deficiency and its composition is Ni_{2.90±0.5}S. In situ synchrotron X-ray observations indicate that Ni_{3-x}S forms above 5.1 GPa and melts incongruently into Ni+liquid up to 10 GPa. The bulk modulus of Ni_{3-x}S at 300 K was determined to be 140 ± 2 GPa with a fixed K' = 4 by static compression with a liquid pressure medium. The eutectic point of the Ni-NiS system lies between Ni₃S and Ni₃S₂ up to 10 GPa and its composition changes from Ni_{66.6}S_{33.4} at 0.1 MPa to Ni_{70.7}S_{29.3} at 10 GPa. The eutectic melting temperature of the Ni-NiS system decreases to 5.1 GPa and 720 K as the pressure increases where Ni and α -Ni₃S₂ are the eutectic solids. On the other hand, the eutectic melting temperature increases with a positive slope above 5.1 GPa where Ni₃S+ α -Ni₃S₂ is stable under subsolidus conditions. Intermediate compounds appear at a lower pressure in the Ni-NiS system than that for the Fe-FeS system. Ni₃S₂ is stable at atmospheric pressure and Ni₃S forms at 5.1 GPa, whereas Fe₃S₂ and Fe₃S form at 14 and 20 GPa, respectively. The addition of Ni complicates the melting relationship in the Fe-FeS system at high pressure because of the wider stability field of Ni₃S. The low-melting temperature of the Fe-Ni-S system plays an important role in the percolative core-formation of planetesimals during planetary accretion.

Keywords: Nickel, sulfur, light element, melting, high pressure, core