Thermodynamic properties of stishovite by low-temperature heat capacity measurements and the coesite-stishovite transition boundary

M. AKAOGI,^{1,*} M. OOHATA,¹ H. KOJITANI,¹ AND H. KAWAJI²

¹Department of Chemistry, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan ²Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan

ABSTRACT

The low-temperature isobaric heat capacity (C_P) of synthetic stishovite was measured between 2 and 311 K by the thermal relaxation method. The measured C_P is considerably smaller than that of Holm et al. (1967) over the whole temperature range studied. The standard entropy, $S_{298.15}^{0}$, of stishovite obtained is 24.0 J/(mol·K), which is 3.8 J/(mol·K) lower than that of Holm et al. (1967). Using the measured C_P , the Debye temperature and thermal Grüneisen parameter at 298.15 K were calculated to be 1109 K and 1.68, respectively. The equilibrium coesite-stishovite transition boundary was calculated using the $S_{298.15}^{0}$ of stishovite from published thermodynamic data. The calculated boundary has a slope of 3.2 ± 0.1 MPa/K at 1200–1600 K, which is larger than the slope determined by the high-pressure in situ X-ray diffraction study by Zhang et al. (1996).

Keywords: Stishovite, heat capacity, entropy, coesite, high pressure, phase transition, Debye temperature, thermodynamic property