Evolution of the interlayer space of hydrated montmorillonite as a function of temperature

Y. ZHENG, A. ZAOUI,* AND I. SHAHROUR

Université Lille Nord de France, LGCgE, Lille1, Polytech'Lille, Cité Scientifique, Avenue Paul Langevin, 59655, Villeneuve D'Ascq Cedex, France

ABSTRACT

The evolution of the interlayer space of different hydrated, Wyoming-type montmorillonite under the influence of temperature was investigated by means of Monte Carlo molecular modeling simulation methods. Calculations were performed on montmorillonite with monovalent and divalent counterions including Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Ca²⁺, Ni²⁺, Zn²⁺, and Pb²⁺. For each of these clays we have conducted a series of 16 simulations in which the temperature is increased systematically from 300 to 400 K, then decreased to 260 K, and finally increased to 300 K. SPC/E water model is used to describe the water and hydroxyl behavior. From these simulations we found that the variation in the interlayer spacing of 3-layer hydrated montmorillonite is much greater than that of 2- and 1-layer hydrated montmorillonite. Hysteresis phenomena have been found in the interlayer spacing-temperature curves, especially at high temperature. The influence of temperature on the swelling behaviors of montmorillonite is different in that it depends on the counterions contained in the clay.

Keywords: Montmorillonite clay, Molecular dynamics, interlayer space, light and heavy cations