American Mineralogist, Volume 95, pages 1580-1589, 2010

AMORPHOUS MATERIALS: PROPERTIES, STRUCTURE, AND DURABILITY[†] The structure of crystals, glasses, and melts along the CaO-Al₂O₃ join: Results from Raman, Al *L*- and *K*-edge X-ray absorption, and ²⁷Al NMR spectroscopy

DANIEL R. NEUVILLE,^{1,*} GRANT S. HENDERSON,² LAURENT CORMIER,³ AND DOMINIQUE MASSIOT⁴

¹CNRS-IPGP, Géochimie et Cosmochimie, Physique des Minéraux et des Magmas, 4 place Jussieu, 75005 Paris, France
²Department of Geology, University of Toronto, Toronto M5S 3B1, Canada
³IMPMC, CNRS UMR 7590, 140 rue de Lourmel, 75015 Paris, France
⁴CNRS-CEMHTI UPR3079 and Université d'Orléans, 1D av. Recherche Scientifique, 45071 Orléans, France

ABSTRACT

Calcium aluminate glasses are important materials where $AlO_{4/2}$ is the only network former. Aluminum in crystals or glasses between CaO and Al_2O_3 can have different environments as a function of the CaO/Al_2O_3 ratio. Using X-ray absorption at the Al *K*- and *L*-edges, Raman and ²⁷Al NMR spectroscopies, we have determined the structural surroundings of Al in glasses, crystals, and melts in this binary system. Aluminum is in octahedral coordination at high-Al_2O_3 content (>80 mol%) and essentially in fourfold coordination with 4 bridging O atoms (BOs) at Al_2O_3 contents between 30 and 75 mol%. At around 25 mol% Al_2O_3, Al is in tetrahedral coordination with two BOs. The presence of higher-coordinated species at high-Al_2O_3 contents and their absence at low Al_2O_3 imply different viscous flow mechanisms for high- and low-concentration Al_2O_3 networks.

Keywords: Aluminate, crystal, glasses, melts, Raman, NMR, XANES