Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure

BJORN O. MYSEN*

Geophysical Laboratory, Carnegie Institution Washington, Washington, D.C. 20015, U.S.A.

ABSTRACT

The effect of dissolved silica on the *PVT* properties of H₂O and structure of silica-saturated aqueous fluids in equilibrium with quartz in the SiO₂-H₂O system has been determined in situ with the materials at temperature (up to 800 °C) and pressure (up to 1350 MPa) in a constant-volume hydrothermal diamond anvil cell. Pressure was measured with the Raman shift of ¹³C synthetic diamond and was also calculated from the *PVT* properties of pure H₂O. The two sets of pressures thus obtained differ by \leq 50 MPa at T < 500 °C. At higher temperatures (and pressures), the pressure difference increases and reaches about 350 MPa at 800 °C.

The structure of the silica-saturated aqueous fluid was probed with microRaman and microFTIR methods. Coexisting molecular H₂O and OH-groups, bonded to Si⁴⁺, exist above ~400 °C and ~0.4 GPa with their abundance-ratio, OH/H₂O°, positively correlated with temperature. Hydrogen bonding diminishes with temperature and cannot be detected in the silica-saturated aqueous fluid above ~400 °C and ~0.4 GPa. This behavior resembles that of pure H₂O under similar temperature and pressure conditions.

Speciation of dissolved silica in the fluid at 400 °C/760 MPa, and above, comprises Q^o and Q¹ species, whereas at lower temperature and pressure only Q^o species were detected. The Q¹/Q^o abundance ratio is positively correlated with temperature (and silica content). An excess volume of mixing, $V_{\rm H2O}^{\rm excess}$, derived from a comparison of EOS of pure H₂O and those of silicate-saturated H₂O, is related to the Q¹/Q^o abundance ratio in silicate-saturated fluid, $X_{\rm Q^1}/X_{\rm Q^o}$. The $V_{\rm H2O}^{\rm excess} = M_{\rm H2O}(1/d^m_{\rm H2O}^{-1}/0.88)$, $V_{\rm H2O}^{\rm excess} \sim 0$ when $X_{\rm Q^1}/X_{\rm Q^o}$ approaches 0.

Keywords: Aqueous fluid, volume properties, spectroscopy, structure