The crystal structure of esperite, with a revised chemical formula, PbCa₂(ZnSiO₄)₃, isostructural with beryllonite

KIMBERLY T. TAIT,^{1,*} HEXIONG YANG,² ROBERT T. DOWNS,² CHEN LI,² AND WILLIAM W. PINCH³

¹Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada ²Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A ³19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.

ABSTRACT

Esperite from Franklin, New Jersey, was first described by Moore and Ribbe (1965) as monoclinic with a well-developed "superlattice" $a = 2 \times 8.814(2)$ Å, b = 8.270(3) Å, $c = 2 \times 15.26(1)$ Å, $\beta \approx 90^{\circ}$, space group $P2_1/n$ (subcell), and the chemical formula PbCa₃(ZnSiO₄)₄. They attributed "superlattice" reflections to the ordered distributions of Pb and Ca cations over four beryllonite-type subcells for esperite with the Ca:Pb ratio greater than 2:1.

We examined two esperite fragments from the type sample using single-crystal X-ray diffraction, electron microprobe analysis, and Raman spectroscopy. Although both fragments have Ca:Pb \approx 1.8, one exhibits the "superlattice" reflections as observed by Moore and Ribbe (1965), whereas the other does not. The sample without "superlattice" reflections has unit-cell parameters *a* = 8.7889(2), *b* = 8.2685(2), *c* = 15.254(3) Å, β = 90.050(1)°, *V* = 1108.49(4) Å³, and the chemical composition Pb_{1.00}(Ca_{1.86}Fe²⁺_{0.07}Mn_{0.04}Cr⁺⁺_{0.02})_{z=1.99}(Zn_{1.00}Si_{1.00}O₄)₃. Its crystal structure was solved in space group *P*2₁/*n* (*R*₁ = 0.022). Esperite is isostructural with beryllonite, NaBePO₄, and its ideal chemical formula should, therefore, be revised to PbCa₂(ZnSiO₄)₃, *Z* = 4. The ZnO₄ and SiO₄ tetrahedra in esperite share corners to form an ordered framework, with Pb²⁺ occupying the nine-coordinated site in the large channels and Ca²⁺ occupying the two distinct octahedral sites in the small channels. The so-called "superlattice" reflections are attributed to triple twins, a trilling of ~60° rotational twinning around the *b* axis, similar to those observed in many other beryllonite-type materials. A phase transformation from a high-temperature polymorph to the esperite structure is proposed to be responsible for the twinning formation.

Keywords: Esperite, beryllonite, Pb-Zn silicates, crystal chemistry, X-ray diffraction