American Mineralogist, Volume 95, pages 59-63, 2010

Structure refinement of a synthetic knorringite, Mg₃(Cr_{0.8}Mg_{0.1}Si_{0.1})₂(SiO₄)₃

AMÉLIE JUHIN,^{1,*} GUILLAUME MORIN,¹ ERIK ELKAÏM,² DANIEL J. FROST,³ MICHEL FIALIN,⁴ FARID JUILLOT,¹ AND GEORGES CALAS¹

¹Institut de Minéralogie et de Physique des Milieux Condensés, Université Paris 6, Université Paris 7, IPGP and CNRS, 140 rue de Lourmel 75015 Paris, France

²Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48 91192 Gif-sur-Yvette Cedex, France ³Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

⁴Centre de Microanalyse Camparis-CNRS, Université Paris 6, 4 place Jussieu, 75252 Paris cedex 5, France

ABSTRACT

The crystal structure of a polycrystalline knorringite, $Mg_3(Cr_{0.8}Mg_{0.1}Si_{0.1})_2(SiO_4)_3$, synthesized at 11 GPa and T = 1500 °C in a multi-anvil press, has been refined from high-resolution synchrotron X-ray powder diffraction data. The structure is cubic, space group $Ia\overline{3}d$, a = 11.5935(1) Å, V = 1558.27(4) Å³, $D_{calc} = 3.79$ g/cm³. The structural formula indicates that knorringite is susceptible to majorite substitution at these synthesis conditions. The Cr-O distance, 1.959(7) Å, is similar to that in Cr-bearing pyrope Mg₃Al₂(SiO₄)₃. This confirms that the magnitude of the Cr-O distance is not responsible for the difference in crystal field splitting values between green knorringite and red Cr-pyrope. A comparison with the structure of other Cr-garnet end-members shows that the Cr-O distance and the ^[4]Si-O-Cr angle decrease with decreasing synthesis pressure and with increasing X-cation size.

Keywords: Structure refinement, knorringite, XRD, synchrotron powder diffraction, Cr-garnet