The crystal chemical role of Zn in alunite-type minerals: Structure refinements for kintoreite and zincian kintoreite

IAN E. GREY,^{1,*} W. GUS MUMME,¹ STUART J. MILLS,² WILLIAM D. BIRCH,³ AND NICHOLAS C. WILSON¹

¹CSIRO Minerals, Box 312, Clayton South, Victoria 3169, Australia

²University of British Columbia, Department of Earth and Ocean Sciences, Vancouver, British Columbia V6T 1Z4, Canada ³Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia

ABSTRACT

Kintoreite, PbFe₃H_{0.94}[(PO₄)_{0.97}(SO₄)_{0.03}]₂(OH)₆, and zincian kintoreite, PbZn_{0.3}Fe₃H_{0.24}[(PO₄)_{0.54} (SO₄)_{0.08}(AsO₄)_{0.38}]₂(OH)₆, have rhombohedral symmetry, space group $R\overline{3}m$, with hexagonal cell parameters a = 7.2963(5) Å, c = 16.8491(5) Å, and a = 7.3789(3) Å, c = 16.8552(7) Å, respectively. The structures have been refined using single-crystal X-ray data to $R_1 = 0.030$ for 374 observed reflections and $R_1 = 0.035$ for 399 observed reflections, respectively. The structures of both minerals comprise rhombohedral stacking of (001) composite layers of corner-shared octahedra and tetrahedra with Pb atoms occupying icosahedral sites between the layers, as in the alunite-type structure. The cornerconnected octahedra form three-membered and six-membered rings as in hexagonal tungsten bronzes. The structure of zincian kintoreite differs from other alunite-type structures in having partial occupation, by Zn, of new sites within the six-membered rings in the octahedral layers. The Zn is displaced to an off-center position in the hexagonal ring, where it assumes fivefold trigonal-bipyramidal coordination, to three of the hydroxyl anions forming the ring, and to the apical O anions of the XO₄ tetrahedra on opposite sides of the ring. The different structural modes of Zn incorporation into SO₄-dominant and (P,As)O₄-dominant members of A²⁺B³⁺₃(XO₄)₂(OH)₆ alunite-type minerals are discussed in terms of the different charge-compensation mechanisms involved.

Keywords: Zincian kintoreite, crystal structure, alunite-type structure, single-crystal study