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AbstrAct

Li-rich zincostaurolite occurs as millimeter-long crystals at the marble footwall of a meta-karst-
bauxite on eastern Samos. The Samos rocks have been metamorphosed during an early Alpine high-P, 
low-T metamorphism (M1) followed by a late Alpine greenschist-grade overprint (M2). Textures and 
mineral chemistry indicate that staurolite formed from gahnite, cookeite, and pyrophyllite during the 
early M1 stage. Staurolite crystals show growth zoning with cores enriched in Zn. Concentrations of 
Fe, Mg, Co, and, to a minor extent, Li increase toward the rims. 

Hydrogen concentrations were analyzed by SIMS. They are significantly higher in cores (up to 
5.97 atoms H per 48 O) compared to rims (3.9 to 4.5 atoms H) and clearly negatively correlated with 
Al. Synchroton-light polarized FTIR spectra on oriented FIB-prepared foils show the same zonation 
effect, the absolute hydrogen concentrations being systematically lower by about 25%. The discrep-
ancy is caused by sub-micrometer scale hydrogen loss at the crystal surface during FIB-thinning. This 
staurolite is unique as from the three available hydrogen sites the H3 site has the highest occupation 
ever observed, whereas the H2 site is not occupied. This is probably due to the high Li content. 

The zonation in hydrogen is interpreted as reflecting the two-stage growth. M1-staurolite that 
formed a low T of about 400–450 °C and high P of >1.5 GPa incorporated nearly the maximum 
amount of hydrogen allowed by the staurolite structure (6 H pfu) and was subsequently overgrown 
and marginally replaced during the M2 stage by less hydrous, Fe-Co richer staurolite. Hydrogen 
zoning in staurolite is facilitated by the sensitivity of its structure to changing P-T conditions. Water 
in staurolite is maximized at high P and low T. Cores of staurolite from Samos represent the most 
hydrous staurolite compositions reported to date.
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introDuction

Staurolite is an important index mineral for determining the 
metamorphic grade of Al-rich rocks. It has a flexible structure and 
the crystal chemistry is complex (Holdaway et al. 1986a, 1986b, 
1991, 1995; Dutrow et al. 1986; Dyar et al. 1991; Hawthorne 
et al. 1993a, 1993b, 1993c; Koch-Müller 1997; Koch-Müller et 
al. 1997, 1998; Chopin et al. 2003). This is due to variably oc-
cupied lattice sites resulting in various coupled vacancy-cation 
and other complex intracrystalline cation substitutions, which 
may induce local ordering. Further complexity arises from the 
fact that staurolite may incorporate highly variable amounts of 
hydrogen (e.g., Lonker 1983; Holdaway et al. 1986a). A special 
feature is that staurolite in zinc- and lithium-rich bulk composi-
tions may accommodate large amounts of Zn and Li into the 
structure (e.g., Feenstra et al. 2003; Chopin et al. 2003, and 
references therein). Because both Zn and Li strongly partition 
into staurolite compared to other common Fe-Mg-Al silicates, 

this leads to considerable expansion of the staurolite stability 
field, both toward lower and higher metamorphic grades (e.g., 
Feenstra et al. 2003).

The general formula of staurolite is A4B4C16D4T8O40X8 
(Hawthorne et al. 1993c). The structure can be considered as 
alternating oxide-hydroxide and kyanite-like layers. Three dis-
tinct octahedra (M) are present in each of these layers: M1A, 
M1B, and M2 in the kyanite layer, and M3A, M3B, and M4 in 
the oxide-hydroxide layer. The tetrahedral site of the kyanite 
layer is termed T1 and that of the oxide-hydroxide layer T2 
(Hawthorne et al. 1993a). Preferential site occupations of the 
various cations and their relation to the general formula are 
given in Table 1 (Hawthorne et al. 1993c; see also Chopin et al. 
2003). There is extensive work on the various coupled substitu-
tion mechanisms, both in natural and synthetic staurolites (cf. 
above). It has been shown, for example, that Zn-Fe substitution 
in staurolite is continuous (Griffen 1981) and that Li incorpora-
tion in T2 is restricted to a maximum of 1.5 apfu, calculated on 
the basis of 48 O (Dutrow 1991; Feenstra et al. 2003). However, 
correct formulation of the crystal chemistry and proper assign-
ment of the cation sites are hampered by the fact that hydrogen 
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