Fe-Mg partitioning between perovskite and ferropericlase in the lower mantle

TAKESHI SAKAI,^{1,*} EIJI OHTANI,² HIDENORI TERASAKI,² NAOKI SAWADA,² YUSUKE KOBAYASHI,² MASAAKI MIYAHARA,² MASAHIKO NISHIJIMA,³ NAOHISA HIRAO,⁴ YASUO OHISHI,⁴ AND TAKUMI KIKEGAWA⁵

¹International Advanced Research and Education Organization, Tohoku University, Sendai 980-8578, Japan ²Institute of Mineralogy, Petrology, and Economic Geology, Tohoku University, Sendai 980-8578, Japan ³Institute for Material Research, Tohoku University, Sendai 980-8577, Japan ⁴Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan ⁵Photon Factory, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

ABSTRACT

Fe-Mg partitioning between perovskite and ferropericlase in the MgO-FeO-SiO₂ system has been studied up to about 100 GPa at around 2000 K using a laser-heated diamond anvil cell (LHDAC). The compositions of both phases were determined by using analytical transmission electron microscopy (ATEM) on the recovered samples. Present results reveal that the Fe-Mg apparent partition coefficient between perovskite and ferropericlase $[K_D^{pv/Fp} = (X_{Fe}^{Pv} X_{Mg}^{Fp})/(X_{Mg}^{Pv} X_{Fe}^{Fp})]$ decreases with increasing pressure for a constant FeO of the system, and it decreases with increasing FeO content of ferropericlase. The gradual decrease of $K_D^{pv/Fp}$ with increasing pressure is consistent with the spin transition in ferropericlase occurring in the broad pressure range from 50 to 100 GPa at around 2000 K.

Keywords: Perovskite, ferropericlase, Fe-Mg partitioning, LHDAC, FIB