LETTER

Structure determination of the 2.5 hydrate MgSO₄ phase by simulated annealing

HONGWEI MA,¹ DAVID L. BISH,^{1,*} HSIU-WEN WANG,¹ AND STEVE J. CHIPERA²

¹Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405, U.S.A. ²Chesapeake Energy Corporation, 6100 N. Western Avenue, Oklahoma City, Oklahoma 73118, U.S.A.

ABSTRACT

The crystal structure of the 2.5 hydrate MgSO₄ phase was determined by simulated annealing from laboratory X-ray powder diffraction data measured from 2–140 °20 using CuK α radiation. The 2.5 hydrate is monoclinic, space group C2/c, with unit-cell parameters a = 18.8636(4) Å, b =12.3391(2) Å, c = 8.9957(2) Å, $\beta = 94.568(2)^\circ$, V = 2087.1(6) Å³, and Z = 16. The model was refined using fundamental-parameters Rietveld refinement, converging to $R_{wp} = 8.89\%$, $R_p = 6.61\%$, $R_{exp} =$ 3.33%, $R_{Bragg} = 3.95\%$, and $\chi^2 = 2.67$. The refined structure is consistent with a formula of 2.5 H₂O. Bond-valence calculations for the refined model show that the structure is chemically sensible. In the refined structure, [Mg(O,H₂O)₆] octahedra and [SO₄] tetrahedra build up 2-D double-sheet slabs by sharing vertex O atoms, which are held together by inter-slab H-bonds involving (SO₄)²⁻ groups and H₂O molecules coordinated with Mg²⁺ cations to form the layer structure of the 2.5 hydrate phase.

Keywords: MgSO₄·2.5H₂O, MgSO₄·2.4H₂O, crystal structure, simulated annealing, structure determination, powder diffraction, Rietveld refinement