Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides: Part II. Correspondence of structural change to irregular variations of partitioning coefficients and tetrad effect variations appearing in interatomic distances

ATSUYUKI OHTA,^{1,*} HIROYUKI KAGI,² MASAHARU NOMURA,³ HIROSHI TSUNO,⁴ AND IWAO KAWABE⁵

¹Institute of Geoscience, Geological Survey of Japan, AIST, Tsukuba 305-8567, Japan

²Geochemical Laboratory, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
³Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan
⁴Faculty of Education and Human Sciences, Yokohama National University, Kanagawa, 240-8501, Japan

⁵Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602, Japan

ABSTRACT

Experimental distribution coefficients of rare earth elements (REEs) between Fe oxyhydroxides (FeOOH) and Mn dioxide (δ -MnO₂) and solutions [K_D (REE)] exhibit anomalous variations: preferential uptake of light REEs by Mn dioxide, a step-like trend in $K_{\rm D}$ (REE) in the Er-Tm-Yb-Lu region, and fractionation of $K_{\rm D}({\rm Y})$ from $K_{\rm D}({\rm Ho})$. Extended X-ray absorption fine structure (EXAFS) spectroscopy was applied to determine coordination states of Er, Tm, Yb, Lu, and Y adsorbed onto FeOOH and δ -MnO₂ to assess structural changes around the REE site. The structures obtained, combined with previously determined structures of light REEs-sorbed Fe and Mn samples, corresponded to variations found in $K_{\rm D}$ (REE). The structural parameters in the first coordination sphere suggest that La, Pr, and Nd adsorbed onto δ -MnO₂ have a distorted tenfold-coordination sphere and differ greatly from La-, Pr-, Nd-, and Sm-sorbed FeOOH, which have a mixture of eightfold- and ninefold-coordination spheres. In contrast, heavy REEs including Y adsorbed onto Fe and Mn samples' local structures have an eightfold-coordination sphere. The preferential uptakes of light REEs by δ -MnO₂ are explained by the structural change. The irregular variations of heavy REEs and Y fractionation from Ho in $K_{\rm D}(\rm REE)$ do not, however, correspond to any change found in the coordination sphere. During characterization of the first coordination sphere, the W-type tetrad effect appears in the series variation of interatomic distances of REE³_{at} and REE-sorbed FeOOH and δ -MnO₂. The occurrence of a tetrad effect indicates that the interatomic distances relate not only to the electrostatic field but also to a quantum field.

Keywords: X-ray absorption spectra, rare earth elements, iron oxyhydroxide, manganese dioxide, structural change, tetrad effect, Y fractionation from Ho