Acid production by FeSO₄·*n*H₂O dissolution and implications for terrestrial and martian aquatic systems

JOEL A. HUROWITZ,^{1,*} NICHOLAS J. TOSCA,² AND M. DARBY DYAR³

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, U.S.A. ²Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A. ³Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.

ABSTRACT

Combined experimental, modeling, and analytical results indicate that the rapid acidification of dilute waters in contact with nominally Fe^{2+} -sulfate minerals (FeSO₄·nH₂O) is caused by Fe³⁺ hydrolysis, which occurs when low levels (<1 mol%) of a contaminant Fe³⁺-sulfate phase are dissolved along with the $FeSO_4$ ·nH₂O. This rapid acidification has previously been attributed to hydrolysis by Fe^{2+} . However, dissolution experiments performed using $ZnSO_4$ nH_2O_2 , in which the Zn^{2+} cation has a higher hydrolysis constant (log K = -8.96) than Fe²⁺ (log K = -9.5), failed to produce significant changes in solution pH. We present the results of geochemical modeling simulations confirming that $FeSO_4$ $\cdot nH_2O$ dissolution alone cannot explain the experimentally observed change in pH from 5.65 to 3.50. Nor can the experimental observations be explained by oxidation of Fe^{2+} to Fe^{3+} in solution. Instead, our experimental results can be best explained by modeling the incorporation of <1 mol%Fe³⁺ contamination from any number of Fe³⁺ or mixed valence Fe-sulfate phases, including anhydrous $Fe_2^{3+}(SO_4)_3$, coquimbite, kornelite, römerite, bilinite, copiapite, or ferricopiapite, all of which are reasonable candidate phases for oxidative breakdown products of FeSO4 nH2O. Laboratory Mössbauer spectra are consistent with up to 0.6 mol% of the total Fe in the sample to be present as Fe³⁺. Although the doublet has parameters that are not diagnostic of any specific Fe³⁺-sulfate, they do help constrain its identification. These results demonstrate that minor contamination of labile Fe²⁺ sulfates by Fe³⁺ can have dramatic effects on solution chemistry that should be considered when studying reactions relevant to acid mine drainage waste sites and other localities where Fe-sulfate minerals occur, such as the surface of Mars.

Keywords: Mars, AMD, melanterite, pH, Mössbauer