American Mineralogist, Volume 93, pages 1899–1902, 2008

Ferric iron content in (Mg,Fe)SiO₃ perovskite and post-perovskite at deep lower mantle conditions

RYOSUKE SINMYO,^{1,*} HARUKA OZAWA,¹ KEI HIROSE,^{1,2} AKIRA YASUHARA,³ NORIAKI ENDO,³ NAGAYOSHI SATA,² AND YASUO OHISHI⁴

¹Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan ²Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan ³JEOL Ltd., Akishima, Tokyo 196-8558, Japan ⁴Japan Synchrotron Radiation Research Institute, Savo, Hyogo 679-5189, Japan

ABSTRACT

We have determined the $Fe^{3+}/\Sigma Fe$ ratio of Al-free (Mg,Fe)SiO₃ perovskite, post-perovskite, and (Mg,Fe)O ferropericlase synthesized at 99 to 187 GPa and 1830 to 3500 K based on the electron energy-loss near-edge structure (ELNES) spectroscopy. The results demonstrate that post-perovskite includes minor amounts of ferric iron with $Fe^{3+}/\Sigma Fe$ ratios of 0.11 to 0.21. These values are substantially lower than those of Al-rich post-perovskite ($Fe^{3+}/\Sigma Fe = 0.59$ to 0.69) reported in a previous study, suggesting that the Fe^{3+} -Al³⁺ coupled substitution is important in post-perovskite, as in the case of perovskite. The Al-bearing post-perovskite in a pyrolitic mantle composition likely contains a considerable amount of ferric iron, which affects various physical properties in the lowermost mantle.

Keywords: Post-perovskite, perovskite, ferric iron, lower mantle, D" layer